首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Large differences in lipid composition of apical and basolateral membranes from epithelial cells exist. To determine the responsible mechanism(s), rat renal cortical brush border and basolateral membrane phospholipids were labeled using32P and either [3H]-glycerol or [2-3H] acetate for incorporation and degradation studies, respectively. Brush border and basolateral membrane fractions were isolated simultaneously from the same cortical homogenate. Different phospholipid classes were degraded at variable rates with phosphatidylcholine having the fastest decay rate. Decay rates for individual phospholipid classes were, however, similar in both brush border and basolateral membrane fractions. In phospholipid incorporation studies again, large variations existed between individual phospholipid classes with phosphatidylcholine and phosphatidylinositol showing the most rapid rates of incorporation. Sphingomyelin and phosphatidylserine showed extremely slow incorporation rates and did not enter into the isotopic decay phase for 48 hr. In contrast to degradation studies, however, the same phospholipid class labeled the two surface membrane domains at highly variable rates. The difference in these rates, with the exception of phosphatidylinositol, were identical to the differences in phospholipid compositions between the two membranes. For example, phosphatidylcholine was incorporated into the basolateral membrane 2.5 × faster than into the brush border membrane and its relative composition was 2.5 × greater in the basolateral membrane. The opposite was true for sphingomyelin. These results indicate incorporation and not degradation rates of individual phospholipids play a major role in regulating the differing phospholipid composition of brush border and basolateral membranes.  相似文献   

2.
To monitor the biogenesis of non-photosynthetic membranes during Chlamydomonas reinhardi 137+ vegetative development, the syntheses of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), the alga's two major extra-thylakoid phospholipids, have been examined through the synchronous cycle. Synthesis of both phospholipids is largely confined to the photoperiod (mid-to-late G1), as is the accretion of cellular polar glycerolipid, with negligible lipogenesis in the dark (S, M, and early-to-mid G1). Coincidence between the cyclic variations of non-thylakoid and of thylakoid polar glycerolipid production during the Chlamydomonas cell cycle indicates that the synthesis of membrane molecules serves to both modulate and coordinate the biogenesis of the various cellular membranes in these actively-cycling cells.  相似文献   

3.
Callus and cell suspension cultures of cowpea (Vigna unguiculata) were induced with 2,4-dichlorophenoxyacetic acid and grown at different NaCl concentrations. The cell biomass yield and its total lipid content decreased with increasing salinity. However, while the hexose content in lipids was higher, the amount of lipid phosphorus was significantly lower in both agar and cell suspension cultures. Ion-transport rates with artificial membranes prepared with different lipid fractions showed that lipids from cells grown in a saline medium were less permeable to Na+ and to Cl- than those grown in a non-saline medium. Also the permeability of membranes prepared with glycolipids was lower than those prepared with phospholipids and whole lipids. Apparently, the increase of hexose/phosphorus ratio in membrane lipids is induced in response to the halo-adaptation process.  相似文献   

4.
A procedure was developed for isolation of macronuclei and nuclear membranes from the ciliated protozoan Tetrahymena pyriformis E, and the lipid composition of the isolated nuclear membranes was determined.This method involves cell lysis with octanol, separation of the nuclear membrane with 0.2 M phosphate–1M NaCl and purification on a discontinuous sucrose gradient. By phase-contrast and electron microscopic examinaton, our preparations were pure and preserved the typical nuclear membrane morphology: inner and outer nuclear membranes, and nuclear pore complexes. As for lipid distribution, the three major phospholipids in the membranes were phosphatidylcholine (31.0%), phosphatidylethanolamine (26.1%) and 2-aminoethylphosphonolipids (23.3%) and the molar ratio of a sterol-like lipid, tetrahymanol to phospholipid phosphorus was 0.036. These results were compared to other membrane fractions of Tetrahymena.  相似文献   

5.
Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.  相似文献   

6.
Intact rat or human erythrocytes and their isolated (ghost) membranes were incubated with the high speed supernatant fraction of homogenates derived from 32P-labeled rat livers. Phospholipid molecules were transferred between the red cell membranes and the liver extracts, as reflected by the convergence of their specific radioactivities with time. Whereas ghosts usually approached isotopic equilibrium with the liver supernatant fraction during a few hours of incubation at 37° C, the exchange of phospholipids by intact cells was no more than one-half, even after 18 hr. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and sphingomyelin were all exchanged in both intact cells and ghosts, albeit to different extents. (A control experiment, incubating 32P-labeled rat erythrocytes or ghosts with unlabeled rat liver extracts, also demonstrated the exchange of all four major phospholipids.) These data may signify that the phospholipids on the cytoplasmic side of the membrane of intact erythrocytes do not exchange with the phospholipids in exogenous liver extracts. If so, all four major phospholipid classes would appear to be present to some extent at both membrane surfaces. The first inference is in agreement with several other studies on this membrane, while the second inference is not.  相似文献   

7.
Two cell-envelope fractions were isolated from chemotrophically grown cells ofRhodospirillum rubrum. On the basis of electron-microscopic investigations, chemical analysis, distribution of components involved in respiration, and polyacrylamide gel electrophoresis, the heavy fraction (ρ20=1.246 g per cm3) was identified as cell-wall, and the light fraction (ρ20=1.145 g per cm3) as cytoplasmic-membrane fragments. Electron micrographs showed cell-wall fragments as open structures while cytoplasmic-membrane preparations were composed of closed membrane vesicles. With respect to the main classes of chemical compounds, cell wall could be distinguished from cytoplasmic membranes by a rather low ratio of phospholipids per protein and a high ratio of carbohydrates per protein. The relative proportion of individual neutral sugars as well as phospholipids (except for lysophosphatidyl ethanolamine) revealed no significant differences between both envelope fractions. Fatty acid analysis demonstrated a higher proportion of saturated fatty acids in cell-wall than in cytoplasmic-membrane fractions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the fractions showed distinct protein compositions. While in cell-wall preparations polypeptides of 43000 and 14000 daltons predominated, 56000- and 52000-dalton polypeptides were the main protein subunits of cytoplasmic membranes. Cross contaminations of both cell-envelope fractions were defined.  相似文献   

8.
Summary High sensitivity, differential scanning calorimetry studies of vovine retinal rod outer segment (ROS) disk membranes and aqueous dispersions of the extracted ROS phospholipids have been performed. ROS disk membranes were found to exhibit a broad peak of excess heat capacity with a maximum at less than about 3°C, ascribable to a gel-to-liquid crystalline phase transition of traction of the phospholipids. A similar thermotropic transition was observed for aqueous dispersions of the total extracted and purified ROS phospholipids. Comparison of the results obtained for the dispersion of total ROS phospholipids to those of the purified head group fractions. suggests that the thermotropic behavior reffects a gel-to-liquid crystalline transition, leading to lateral phase separation, involving those phosphatidylcholine (PC) molecules containing saturated fatty acylchains, possibley together with the highest melting ROS phosphatidylethanolamine (PE) and phosphatidylserine (PS) components. The interpretation of the thermal behavior of the ROS disk membranes depends on whether the transition is assumed to derive from the ROS PC and/or PE/PS fractions, and whether the transbilayer arrangement of the ROS phospholipids is assumed to be symmetric or asymmetric. The calorimetric data can be simply explained in terms of an asymmetric distribution of the major ROS disk membrane phospholipids (G.P. Miljanich et al.,J. Membrane Biol. 60:249–255, 1981). In this case, the transition would arise from the PE/PS fractions in the outer ROS disk membrane monolyer, and the anticipated transition from the PC in the inner monolayer would be broadened due to interaction with cholesterol. For the ROS membranes at higher temperatures, two additional, irreversible transitions are observed at 57 and 72°C, corresponding to the thermal denauturation of opsin and rhodopsin, respectively.  相似文献   

9.
When 1-14C-palmitic acid is used to pulse label logarithmic cultures of Tetrahymena pyriformis, radioactivity appears in lipids of the various membrane types at vastly differing rates. The microsomes and postmicrosomal supernatant attain a high specific radioactivity within 1 min, while the membranes enveloping the cilia require several hours to reach the microsomal level. A similar pattern is obtained when the tracer is sodium 1-14C-acetate or 8,9-3H-hexadecyl glycerol. In all fractions the phosphonolipid incorporates radioactivity from 14C-palmitate much less rapidly than do the other major phospholipids. The patterns of labeling suggest that new lipids are transported from a cytoplasmic site of synthesis to points of membrane fabrication throughout the cell.  相似文献   

10.
We show in this paper that a complex constituted by phospholipids and LHI and LHII α polypeptides was inserted in a heavy membrane fraction in a nonextractable form, indicating a transmembrane localization. The best accepting membranes originated from aerobically grown cells. Addition of ATP during the insertion inhibited this reaction 25 to 30% in heavy membranes isolated from aerobically grown cells (HMaer) and a higher inhibition (60 to 65%) was detected when using heavy membranes isolated from photosynthetically grown cells (HMpho). Purification by gel filtration of a crude Na2CO3 extract yielded three phosphate-labeled fractions. Two of them contained protein and phospholipids in a stable association. However, only fractions containing phosphatidylethanolamine were shown to be reconstituted. The third radioactive fraction contained labeled ATP and protein, but no phospholipids and could not be reassociated to the heavy membranes of any origin. A model for the insertion of the LH polypeptides is presented in which the recently synthesized polypeptides are phosphorylated and become associated to anionic phospholipids. The interaction of this complex to the membrane spontaneously leads to stable insertion. Received: 16 February 1999 / Accepted: 22 March 1999  相似文献   

11.
The hypothesis that sterol-enriched domains represent sites of preferred localization of PIP-aquaporins was tested in experiments on plasma membranes isolated from cells of etiolated pea (Pisum sativum L.) seedlings. Plasma membranes were isolated from microsomes by the partition in the aqueous two-phase polymer system and separated into vesicle fractions of different buoyant density by flotation in discontinuous OptiPrep gradient. Two types of plasma membrane preparations were used: one was treated with cold 1% Triton X-100 and the other was not. In untreated preparations, three populations of plasma membrane vesicles were obtained, while in the case of treated preparations, fractions of detergent-resistant membranes (DRM) and solubilized membrane proteins were obtained. In all membrane fractions collected after OptiPrep flotation, the amounts of proteins, sterols, and PIP-aquaporins were determined. The highest sterol content was detected in the membrane fraction with buoyant density 1.098 g/cm3 and in the DRM fraction (1.146 g/cm3). These fractions contained much more PIP-aquaporins than the other ones. Phase state of the lipid bilayer was determined by measuring generalized polarization excitation of fluorescence (GPEX) of laurdan incorporated into the membranes of different fractions. It was revealed that the lipid bilayer of the membranes with density of 1.098 g/cm3 had a higher extent of ordering than that of the fractions with density of ∼1.146 g/cm3. The results indicated that uppermost local concentrations of PIP-aquaporins were associated with tightly packed sterol-enriched domains. Moreover, upon solubilization of plasma membrane with Triton X-100, PIP-aquaporins mainly resided in DRM, thus exhibiting a high affinity to sterols.  相似文献   

12.
The membranes of Acanthamoeba palestinensis were studied by examination in fixed cells, and then by following the movements of glycerol-3H-labeled phospholipids by cell fractionation. Two previously undescribed structures were observed: collapsed cytoplasmic vesicles of cup shape, and plaques in food vacuole and plasma membrane similar in size to the collapsed vesicles. It appeared that the plaques formed by insertion of collapsed vesicles into membranes and/or that collapsed vesicles formed by pinching off of plaques. Fractions were isolated, enriched with nuclei, rough endoplasmic reticulum (RER), plasma membrane, Golgi-like membranes, and collapsed vesicles. The changes in specific activity of glycerol-3H-labeled phospholipids in these membranes during incorporation, turnover, and after pulse-labeling indicated an ordered sequence of appearances of newly synthesized phospholipids, first in nuclei and RER, then successively in Golgi membranes, collapsed vesicles, and finally, plasma membrane. In previous work we had found no large nonmembranous phospholipid pool in A. palestinensis. These observations are consistent with the hypothesis that membrane phospholipids are synthesized, perhaps as integral parts of membranes, in RER and nuclei. Subsequently, some of the newly synthesized phospholipids are transported to the Golgi complex to become integrated into the membranes of collapsed vesicles, which are precursors of the plasma membrane. Collapsed vesicles from the plasma membrane by inserting into it as plaques. When portions of the plasmalemma from food vacuoles, collapsed vesicles pinch off from their membranes and are recycled back to the cell surface.  相似文献   

13.
To study the interaction of voltage-sensitive Na+-channels with membrane lipids, the phospholipid and fatty acid composition of highly purified membrane fragments from the remarkably differentiated plasma membrane of Electrophorus electricus has been analyzed. After density gradient fractionation and carrier free electrophoresis, fractions with up to 30 pmol tetrodotoxin binding/mg protein can be obtained, which may correspond to a 50% pure preparation of the extrasynaptic part of the excitable face. Phospholipid classes and cholesterol are separated by one-dimensional thin-layer chromatography in acidic and alkaline solvent systems. The following mean molar contents are found: 40% phosphatidylcholine, 23% phosphatidylserine, 30% phosphatidylethanolamine and 7% sphingomyelin. In a series of 11 animals, significant deviations from these mean values have been observed. The fatty acid composition of the phospholipids has been determined by gas chromatography. Phosphatidylcholine contains more than 50% 16:0, and about 20% unsaturated fatty acids in the C-18 group. Compared to other plasma membrane fractions, this phospholipid is the least differentiated. By contrast, phosphatidylethanolamine and phosphatidylserine show many characteristics in different membrane fractions, especially in their unsaturated components representing more than 50%. 22:6, as the major constituent in these fractions, accounts for a quarter to a third of all fatty acids in these fractions. 18:0 is the main saturated component in these two phospholipids with abundances of typically a quarter or less of all fatty acids. Knowledge of the lipid composition of these excitable membranes may help to conserve binding and structural properties when analyzing lipid-sensitive Na+-channels in vitro. It is also useful as a guideline for systematic reconstitution studies.  相似文献   

14.
Summary Static polarization and differential polarized phase fluorimetry studies on rat renal cortical brush border (BBM) and basolateral membranes (BLM) were undertaken to determine the membrane components responsible for differences in BBM and BLM fluidity, whether these differences were due to the order or dynamic components of membrane fluidity and if a fluidity gradient existed within the bilayer. Surface membrane proteins rigidified both BBM and BLM fluidity. Neutral lipid extraction, on the other hand, caused a larger decrease in BBM than BLM fluorescence polarization (0.104vs. 0.60,P<0.01) using diphenyl hexatriene (DPH). Cholesterol addition to phospholipid fractions restored membrane fluidity to total lipid values in both BBM and BLM phospholipids. The response to cholesterol in the BBM was biphasic, while the BLM response was linear. Lateral mobility, quantitated using dipyrenylpropane, was similar in both BBM and BLM fractions at 35°C. BBM and BLM differed primarily in the order component of membrane fluidity as DPH-limiting anisotropy (r ) (0.212vs. 0.154,P<0.01) differed markedly between the two membrane fractions. The two membrane components also differed with respect to 2 and 12-anthroyloxy stearate (2-AS, 12-AS) probes, indicating a difference in the dynamic component of membrane fluidity may also be present. DPH and 12-As probes were also used to quantitate inner core membrane fluidity and showed the BBM was less fluid than the BLM for intact membranes, total lipid extracts and phospholipids. Results obtained using the surface membrane probes trimethylammonium-DPH (TMA-DPH) and 2-AS suggested a fluidity gradient existed in both BBM and BLM bilayers with the inner core being more fluid in both membranes. These data indicate cholesterol is in large part responsible for fluidity differences between BBM and BLM and that these membranes, while clearly differing in the order component of membrane fluidity, may also difer in the dynamic component as well.  相似文献   

15.
Summary Plasma membranes isolated from Yoshida ascites hepatoma AH-130 by a modification of the method of T. K. Ray (Biochim. Biophys. Acta 196: 1, 1970), were subfractionated into three fractions having densities (d) 1.12, 1.14 and 1.16 by discontinuous sucrose density-gradient. Membrane subfractions were characterized by electron-microscopy, by assay of marker enzymes and by lipid composition. All subfractions appeared to be essentially free from whole mitochondria, lysosomes and nuclei. Subfraction d 1.16 had, the highest 5-nucleotidase, Mg++-ATPase and (Na++K+)-ATPase activities; cytochromec oxidase was undetectable in any fraction and glucose-6-phosphatase was measurable only in fraction d 1.14. Adenylate cyclase had the highest activity in fractions d 1.14 and 1.16. Cyclic AMP phosphodiesterase was nearly equally distributed in the fractions. Adenylate, cyclase, 5-nucleotidase and Mg++-ATPase activities of tumor membrane were lower with respect to liver plasma membrane, while cyclic AMP phosphodiesterase and (Na++K+)-ATPase were found to have similar activities in the two membrane preparations. With respect to liver membrane, hepatoma membrane contained a higher amount of glycolipids and a higher amount of phospholipids accounted for mainly, by sphingomyelin, phosphatidylserine and phosphatidic acid. The possible significance of the decrease of adenylate activity in the hepatoma membrane is briefly discussed.  相似文献   

16.
SYNOPSIS. Plasma membranes of normal duckling erythrocytes were prepared by blender homogenization and nitrogen decompression. Surface membrane vesicles of red cells infected with the avian malaria Plasmodium lophurae were produced by nitrogen decompression. Membranes of erythrocyte-free malaria parasites were removed from cytoplasmic constituents by Dounce homogenization. These membranes were collected by centrifugation in a sucrose step gradient and purified on a linear sucrose gradient. Red cell membranes had a buoyant density of 1.159 g/cm3, whereas plasmodial membranes banded at 2 densities: 1.110 g/cm3 and 1.158 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the isolated red cell membranes revealed 7 major protein bands with molecular weights (MW) ranging from 230,000 to 22,000, and 3 glycoprotein bands with MW of 160,000, 88,000 and 37,000. Parasite membranes also had 7 major bands with MW ranging from 100,000 to 22,000. No glycoproteins were identifiable in these membranes. The proteins of the surface membranes from infected red cells had MW similar to those from normal red cells; however, there was some evidence of a reduction in the amount of the high MW polypeptides. The red cell membrane contained 79 nmoles sialic acid/mg membrane protein, whereas plasmodial membranes had 8 nmoles sialic acid/mg membrane protein. The sialic acid content of the surface membranes of infected red cells was significantly smaller than that of normal cells. Lactoperoxidase-glucose oxidase-catalyzed iodination of intact normal and malaria-infected erythrocytes labeled 7 surface components. Although no observable differences in iodinatable proteins were seen in these preparations, there was a striking reduction in the iodinatability of erythrocytic membranes obtained from P. lophurae-infected cells. Erythrocyte-free plasmodia bound very little radioactive iodine; the small amount of radioactivity was distributed among 3 major bands with MW of 42,000, 32,000 and 28,000. It is suggested that the alterations of the surface of the P. lophurae-infected erythrocyte do not occur by a wholesale insertion of plasmodial membrane proteins into the red cell plasma membrane, but rather that there are parasite-mediated modifications of existing membrane polypeptides.  相似文献   

17.
Early stages in the formation of membranes and photosynthetic units were studied under growth-limiting phototrophic and chemotrophic conditions in cells of Rhodopseudomonas capsulata. The incorporation of polypeptides, forming bacteriochlorophyll-carotinoid-protein complexes in the membrane, was followed by use of pulse-labeling and immunoprecipitation techniques. The newly synthesized polypeptides were inserted into two distinct membrane fractions at both different rates and proportions. The two membrane fractions differed in sedimentation behavior, absorption spectra and activities of the respiratory chain. The individual pigment-associated proteins did not exhibit precursor-product relationship between the two membrane fractions. The data suggest that newly synthesized polypeptides were integrated both into cytoplasmic and pre-existing intracytoplasmic membranes, where the proteins and pigments were assembled to form reaction centers and light-harvesting pigment-protein complexes.Abbreviations Bchl bacteriochlorophyll - cpm counts per minute - M r relative molecular mass - P 100 pellet of 100,000xg, 60 min - P300 pellet of 300,000xg, 90 min - pO2 oxygen partial pressure - R Rhodopseudomonas - dodecyl sulfate sodium dodecyl sulfate. International standard units - Bq Becquerel (s-1) - Pa Pascal (N/m2; 1 Torr=133,3 Pa)  相似文献   

18.
We have altered the phospholipid composition of the plasma membranes of Ehrlich ascites cells grown in mice and studied the effects on the properties of the insulin receptor of this cell. The insulin receptor of the Ehrlich cell demonstrated all of the binding characteristics of mammalian insulin receptors: specificity for insulin and insulin analogs, saturability, inverse relationship of steady-state binding levels to temperature, and negative cooperativity. Cellular phospholipids enriched in monounsaturated fatty acyl groups were produced by growth in animals that were maintained on a diet rich in coconut oil; cellular phospholipids enriched in polyunsaturated fatty acyl groups were produced in animals fed sunflower oil. Insulin receptors were present in the normal cells at 180 000 sites/cell but this fell to 125 000 (p <0.001) in cells enriched in monounsaturated fatty acids and rose to 386 000 (p <0.001) in cells enriched in polyunsaturated fatty acids. The normal cells had affinity constants ( and ) of 0.03 and 0.01 nM−1. The cells enriched in monounsaturated fatty acids had an increase in these affinity constants to 0.06 and 0.03 nM−1 whereas values of 0.01 and 0.005 nM−1 were obtained in the cells enriched in polyunsaturated fatty acids (all comparison p <0.001). Thus, increased unsaturation of plasma membrane phospholipids, produced by dietary manipulations, was associated with an increase in insulin receptor number but a decrease in binding affinity. In contrast, increased saturation of the phospholipids of the plasma membrane was associated with a decrease in receptor number and an increase in affinity. The results can be explained by a model in which the insulin receptor is assumed to be multimeric.  相似文献   

19.
Summary A new procedure for the rapid isolation of renal cortical brush-border and basolateral membranes from the same homogenate is described. Brush-border membranes isolated using Mg2+-EGTA precipitation were enriched 18-fold for leucine aminopeptidase and had a recovery of 32.5%. Basolateral membrane fractions were isolated using a discontinuous sucrose gradient and showed an enrichment of 10.7-fold and recovery of 12.8% using (Na+, K+)-ATPase as a marker enzyme. Lipid analysis using two-dimensional TLC separation of phospholipids and gas liquid chromatography for cholesterol showed marked differences in the lipid composition of the brush-border and basolateral membranes. The brush-border membrane had increased sphingomyelin, phosphatidylserine, ethanolamine plasmalogens, and an increased cholesterol-to-phospholipid and sphingomyelin-to-phosphatidylcholine ratio compared to the basolateral membrane. The relative turnover of total membrane and individual phospholipid species using a double isotope ratio method was carried out. Phospholipids were labeled with either phosphorus 32 and 33 or acetate (3H, 1-14C). The relative turnover of phospholipid species and cholesterol differed strikingly. Phosphatidylcholine showed a high turnover, phosphatidylethanolamine and phosphatidylinositol had intermediate values and sphingomyelin, phosphatidylserine and cholesterol had low relative turnover rates. The order of phospholipid class relative turnover was independent of the labeled precursor used. The brush-border membrane had a significantly reduced relative turnover rate for total membrane phospholipids, sphingomyelin and cholesterol compared to the basolateral membrane. These data show marked differences in the lipid composition and relative turnover rates of the phospholipid species of the brush-border and basolateral membranes. They provide a biochemical basis for the recently reported differences in brush-border and basolateral membrane fluidity and suggest independent cellular regulation of brush-border and basolateral membrane lipids.  相似文献   

20.
(1) Krebs II ascites cells were taken as a model of the neoplastic cells to investigate the transverse distribution of phospholipids in the plasma membrane. The experimental procedure was based on non-lytic degradation of phospholipids in the intact cell by Naja naja phospholipase A2 and Staphylococcus aureus sphingomyelinase C and on phopholipid analysis of purified plasma membranes. It was shown that the three major phospholipids, i.e., phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, are randomly distributed between the two halves of the membranes, whereas phosphatidylserine remains located in the inner leaflet. (2) The membrane localization of phosphatidylcholine and phosphatidylethanolamine subclasses (diacyl, alkylacyl and alkenylacyl) was also examined, using a new procedure of ether-phospholipid determination. The method involves a selective removal of diacyl species by guinea pig pancreas phospholipase A1 and of alkenylacyl species by acidolysis. This analysis revealed a 50% increase of ether phospholipids in the plasma membrane as compared to the whole cell (36.5 and 23.1% of total phospholipid, respectively). Furthermore, a strong membrane asymmetry was demonstrated for the three phosphatidylcholine subclasses, since 1-alkyl-2-acyl-sn-glycerol-3-phosphocholine (alkylacyl-GPC) was entirely found in the inner leaflet, whereas both diacyl- and alkenylacyl-GPC displayed an external localization. The same pattern was observed for phosphatidylethanolamine subclasses, except for 1-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine, which was found randomly distributed. These results are discussed in relation to the process of cell malignant transformation and to the biosynthesis of platelet-activating factor (PAF-acether or 1-alkyl-2-acetyl-GPC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号