首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 35000-Mr beta-adrenergic receptor mRNA binding protein (beta ARB) is induced by beta-adrenergic agonists and binds to G-protein-linked receptor mRNAs that exhibit agonist-induced destabilization. Recently, we identified a 20-nucleotide, AU-rich region in the 3'-untranslated region of the hamster beta 2-adrenergic receptor mRNA consisting of an AUUUUA hexamer flanked by U-rich regions, which constitutes the binding domain for beta ARB. U to G substitution in the hexamer region attenuates the binding of beta ARB, whereas U to G substitution of hexamer and flanking U-rich domains abolishes binding of beta ARB and stabilizes beta 2-adrenergic receptor mRNA levels in transfectant clones challenged with either isoproterenol or cyclic AMP. In the study presented here, we mutated the 20-nucleotide ARE region to establish the minimal AU-rich sequence required for beta ARB binding. U to G substitutions of flanking poly(U) regions and of the hexamer established the nature of the binding properties. Using various mutants, we demonstrated also that binding of beta ARB correlates with the extent of destabilization of beta 2-adrenergic receptor mRNA in response to agonist stimulation. High-affinity binding of hamster, rat, mouse, porcine, and human ARE sequences to beta ARB was revealed by SDS-polyacrylamide gel electrophoresis following UV-catalyzed cross-linking and by gel mobility shift assays. Further, beta ARB was shown to bind more avidly to the 20-nucleotide ARE region than to well-established mRNA destablization sequences of tandem repeats of five pentamers. Thus, for beta 2-adrenergic receptor, mRNA destabilization likely occurs via conserved AU-rich elements present in the 3'-untranslated regions of receptor mRNAs.  相似文献   

2.
Beta(1)- and beta(2)-adrenergic receptors (beta(1)AR and beta(2)AR) are co-expressed in numerous tissues where they play a central role in the responses of various organs to sympathetic stimulation. Although the two receptor subtypes share some signaling pathways, each has been shown to have specific signaling and regulatory properties. Given the recent recognition that many G protein-coupled receptors can form homo- and heterodimers, the present study was undertaken to determine whether the beta(1)AR and beta(2)AR can form dimers in cells and, if so, to investigate the potential functional consequences of such heterodimerization. Using co-immunoprecipitation and bioluminescence resonance energy transfer, we show that beta(1)AR and beta(2)AR can form heterodimers in HEK 293 cells co-expressing the two receptors. Functionally, beta-adrenergic stimulated adenylyl cyclase activity was found to be identical in cells expressing beta(1)AR, beta(2)AR, or both receptors at similar levels, indicating that heterodimerization did not affect this signaling pathway. When considering ERK1/2 MAPK activity, a significant agonist-promoted activation was detected in beta(2)AR- but not beta(1)AR-expressing cells. Similarly to what was observed in cells expressing the beta(1)AR alone, no beta-adrenergic stimulated ERK1/2 phosphorylation was observed in cells co-expressing the two receptors. A similar inhibition of agonist-promoted internalization of the beta(2)AR was observed upon co-expression of the beta(1)AR, which by itself internalized to a lesser extent. Taken together, our data suggest that heterodimerization between beta(1)AR and beta(2)AR inhibits the agonist-promoted internalization of the beta(2)AR and its ability to activate the ERK1/2 MAPK signaling pathway.  相似文献   

3.
Internalization of beta-adrenergic receptors (betaARs) occurs by the sequential binding of beta-arrestin, the clathrin adaptor AP-2, and clathrin. D-3 phosphoinositides, generated by the action of phosphoinositide 3-kinase (PI3K) may regulate the endocytic process; however, the precise molecular mechanism is unknown. Here we demonstrate that betaARKinase1 directly interacts with the PIK domain of PI3K to form a cytosolic complex. Overexpression of the PIK domain displaces endogenous PI3K from betaARK1 and prevents betaARK1-mediated translocation of PI3K to activated beta2ARs. Furthermore, disruption of the betaARK1/PI3K interaction inhibits agonist-stimulated AP-2 adaptor protein recruitment to the beta2AR and receptor endocytosis without affecting the internalization of other clathrin dependent processes such as internalization of the transferrin receptor. In contrast, AP-2 recruitment is enhanced in the presence of D-3 phospholipids, and receptor internalization is blocked in presence of the specific phosphatidylinositol-3,4,5-trisphosphate lipid phosphatase PTEN. These findings provide a molecular mechanism for the agonist-dependent recruitment of PI3K to betaARs, and support a role for the localized generation of D-3 phosphoinositides in regulating the recruitment of the receptor/cargo to clathrin-coated pits.  相似文献   

4.
Beta1-adrenergic receptors, expressed at high levels in the human heart, have a carboxyl-terminal ESKV motif that can directly interact with PDZ domain-containing proteins. Using the beta1-adrenergic receptor carboxyl terminus as bait, we identified the novel beta1-adrenergic receptor-binding partner GIPC in a yeast two-hybrid screen of a human heart cDNA library. Here we demonstrate that the PDZ domain-containing protein, GIPC, co-immunoprecipitates with the beta1-adrenergic receptor in COS-7 cells. Essential for this interaction is the Ser residue of the beta1-adrenergic receptor carboxyl-terminal ESKV motif. Our data also demonstrate that beta1-adrenergic receptor stimulation activates the mitogen-activated protein kinase, ERK1/2. beta1-adrenergic receptor-mediated ERK1/2 activation was inhibited by pertussis toxin, implicating Gi, and was substantially decreased by the expression of GIPC. Expression of GIPC had no observable effect on beta1-adrenergic receptor sequestration or receptor-mediated cAMP accumulation. This GIPC effect was specific for the beta1-adrenergic receptor and was dependent on an intact PDZ binding motif. These data suggest that GIPC can regulate beta1-adrenergic receptor-stimulated, Gi-mediated, ERK activation while having no effect on receptor internalization or Gs-mediated cAMP signaling.  相似文献   

5.
Mao YM  Zhou HH 《生理科学进展》2006,37(3):229-232
β2肾上腺素受体(β2-adrenergic receptor,132-AR)对血管和支气管平滑肌的紧张性起着重要的调节作用,能介导心脏的正性变力和变时效应。近年来研究发现,人类β2-AR具有遗传多态性,而使受体表现出不同的生物学特性。本文主要对β2-AR的遗传多态性及遗传药理学的研究进展进行简要概述。  相似文献   

6.
Allelic variation at the 3'-end of the vitamin D receptor (VDR) gene has been associated with a 3-5-fold increased risk of developing prostate cancer and with differences in bone mineralization. This genetic diversity does not alter the VDR protein structurally, but instead may be a marker(s) of other, nearby polymorphisms that influence message stability or translation. The work reported here was instigated to identify additional VDR 3'-UTR polymorphisms that may have functional significance and to then test whether these genetic variants alter message stability. Initially, four novel, frequently occurring sequence variants were identified that associated with two common haplotypes that were described previously. These common sequence variants were not found within three message-destabilizing elements that we mapped within the 3'-UTR of the vitamin D receptor mRNA. Furthermore, the two VDR 3'-UTR haplotypes conferred an identical half-life on a heterologous beta-globin reporter gene, in an in vitro assay. We therefore conclude that common polymorphisms within the VDR 3'-UTR do not influence message stability.  相似文献   

7.
8.
An AU-rich element (ARE) in the 3'-untranslated region (UTR) of bcl-2 mRNA has previously been shown to be responsible for destabilizing bcl-2 mRNA during apoptosis through increasing AUF1 binding. In the present study, we investigated the effect of the region upstream of the ARE on bcl-2 mRNA stability using serial deletion constructs of the 3'-UTR of bcl-2. Deletion of 30 nucleotides mostly consisting of the CA repeats, located upstream of the ARE, resulted in the stabilization of bcl-2 mRNA abundance, in the absence or presence of the ARE. The specificity of the CA repeats in terms of destabilizing bcl-2 mRNA was proven by the substituting the CA repeats with other alternative repeats of purine/pyrimidine, but this had no effect on the stability of bcl-2 mRNA. CA repeats alone, however, failed to confer instability to bcl-2 or gfp reporter mRNAs, indicating a requirement for additional sequences in the upstream region of the 3'-UTR. Serial deletion and replacement of a part of the region upstream of the CA repeats revealed that the entire 131-nucleotide upstream region is an essential prerequisite for the CA repeat-dependent destabilization of bcl-2 mRNA. Unlike the ARE, CA repeat-mediated degradation of bcl-2 mRNA was not accelerated upon apoptotic stimulus. Moreover, the upstream sequences and CA repeats are conserved among mammals. Collectively, CA repeats contribute to the constitutive decay of bcl-2 mRNA in the steady states, thereby maintaining appropriate bcl-2 levels in mammalian cells.  相似文献   

9.
We tested thehypothesis that the -myosin heavy chain (-MHC) 3'-untranslatedregion (UTR) mediates decreased protein expression after tenotomy ofthe rat soleus. We also tested the hypothesis that decreased proteinexpression is the result of RNA-protein interactions within the 3'-UTR.-MHC was chosen for study because of its critical role in thefunction of postural muscles such as soleus. Adult rat soleus muscleswere directly injected with luciferase (LUC) reporter constructscontaining either the -MHC or SV40 3'-UTR. After 48 h oftenotomy, there was no significant effect on LUC expression in the SV403'-UTR group. In the -MHC 3'-UTR group, LUC expression was 37.3 ± 4% (n = 5, P = 0.03) of that in shamcontrols. Gel mobility shift assays showed that a protein factorspecifically interacts with the -MHC 3'-UTR and that tenotomysignificantly increases the level of this interaction (25 ± 7%,n = 5, P = 0.02). Thus the -MHC3'-UTR is directly involved in decreased protein expression that isprobably due to increased RNA-protein binding within the UTR.

  相似文献   

10.
The beta2ARs (beta(2)-adrenergic receptors) undergo ligand-induced internalization into early endosomes, but then are rapidly and efficiently recycled back to the plasma membrane, restoring the numbers of functional cell-surface receptors. Gathering evidence suggests that, during prolonged exposure to agonist, some beta2ARs also utilize a slow recycling pathway through the perinuclear recycling endosomal compartment regulated by the small GTPase Rab11. In the present study, we demonstrate by co-immunoprecipitation studies that there is a beta2AR-Rab11 association in HEK-293 cells (human embryonic kidney cells). We show using purified His(6)-tagged Rab11 protein and beta2AR intracellular domains fused to GST (glutathione transferase) that Rab11 interacts directly with the C-terminal tail of beta2AR, but not with the other intracellular domains of the receptor. Pull-down and immunoprecipitation assays revealed that the beta2AR interacts preferentially with the GDP-bound form of Rab11. Arg(333) and Lys(348) in the C-terminal tail of the beta2AR were identified as crucial determinants for Rab11 binding. A beta2AR construct with these two residues mutated to alanine, beta2AR RK/AA (R333A/K348A), was generated. Analysis of cell-surface receptors by ELISA revealed that the recycling of beta2AR RK/AA was drastically reduced when compared with wild-type beta2AR after agonist washout, following prolonged receptor stimulation. Confocal microscopy demonstrated that the beta2AR RK/AA mutant failed to co-localize with Rab11 and recycle to the plasma membrane, in contrast with the wild-type receptor. To our knowledge, the present study is the first report of a direct interaction between the beta2AR and a Rab GTPase, which is required for the accurate intracellular trafficking of the receptor.  相似文献   

11.
Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'-UTR or the adenylate/uridylate-rich (A+U-rich element (ARE)) RNA from the 3'-UTR sequences of beta(2)-AR in cell lines that endogenously express this receptor. Reversal of beta(2)-adrenergic receptor translational repression by retroviral expression of 3'-UTR sequences suggested that ARE RNA-binding proteins are involved in translational suppression of beta(2)-adrenergic receptor expression. Using a 20-nucleotide ARE RNA from the receptor 3'-UTR as an affinity ligand, we purified the proteins that bind to these sequences. T-cell-restricted intracellular antigen-related protein (TIAR) was one of the strongly bound proteins identified by this method. UV-catalyzed cross-linking experiments using in vitro transcribed 3'-UTR RNA and glutathione S-transferase-TIAR demonstrated multiple binding sites for this protein on beta(2)-AR 3'-UTR sequences. The distal 340-nucleotide region of the 3'-UTR was identified as a target RNA motif for TIAR binding by both RNA gel shift analysis and immunoprecipitation experiments. Overexpression of TIAR resulted in suppression of receptor protein synthesis and a significant shift in endogenously expressed beta(2)-AR mRNA toward low molecular weight fractions in sucrose gradient polysome fractionation. Taken together, our results provide the first evidence for translational control of beta(2)-AR mRNA by TIAR.  相似文献   

12.
13.
The atypical beta3-adrenergic receptor (AR) agonist CGP-12177 has been used to define a novel atypical beta-AR subtype, the putative beta4-AR. Recent evaluation of recombinant beta-AR subtypes and beta-AR-deficient mice, however, has established the identity of the pharmacological beta4-AR as a novel state of the beta1-AR protein. The ability of aryloxypropanolamine ligands like CGP-12177 to independently interact with agonist and antagonist states of the beta1-AR has important implications regarding receptor classification and the potential development of tissue-specific beta-AR agonists.  相似文献   

14.
Structure-function studies of rhodopsin indicate that both intradiscal and transmembrane (TM) domains are required for retinal binding and subsequent light-induced structural changes in the cytoplasmic domain. Further, a hypothesis involving a common mechanism for activation of G-protein-coupled receptor (GPCR) has been proposed. To test this hypothesis, chimeric receptors were required in which the cytoplasmic domains of rhodopsin were replaced with those of the beta(2)-adrenergic receptor (beta(2)-AR). Their preparation required identification of the boundaries between the TM domain of rhodopsin and the cytoplasmic domain of the beta(2)-AR necessary for formation of the rhodopsin chromophore and its activation by light and subsequent optimal activation of beta(2)-AR signaling. Chimeric receptors were constructed in which the cytoplasmic loops of rhodopsin were replaced one at a time and in combination. In these replacements, size of the third cytoplasmic (EF) loop critically determined the extent of chromophore formation, its stability, and subsequent signal transduction specificity. All the EF loop replacements showed significant decreases in transducin activation, while only minor effects were observed by replacements of the CD and AB loops. Light-dependent activation of beta(2)-AR leading to Galphas signaling was observed only for the EF2 chimera, and its activation was further enhanced by replacements of the other loops. The results demonstrate coupling between light-induced conformational changes occurring in the transmembrane domain of rhodopsin and the cytoplasmic domain of the beta(2)-AR.  相似文献   

15.
beta-arrestin-biased agonism at the beta2-adrenergic receptor   总被引:3,自引:0,他引:3  
Classically, the beta 2-adrenergic receptor (beta 2AR) and other members of the seven-transmembrane receptor (7TMR) superfamily activate G protein-dependent signaling pathways in response to ligand stimulus. It has recently been discovered, however, that a number of 7TMRs, including beta 2AR, can signal via beta-arrestin-dependent pathways independent of G protein activation. It is currently unclear if among beta 2AR agonists there exist ligands that disproportionately signal via G proteins or beta-arrestins and are hence "biased." Using a variety of approaches that include highly sensitive fluorescence resonance energy transfer-based methodologies, including a novel assay for receptor internalization, we show that the majority of known beta 2AR agonists exhibit relative efficacies for beta-arrestin-associated activities (beta-arrestin membrane translocation and beta 2AR internalization) identical to the irrelative efficacies for G protein-dependent signaling (cyclic AMP generation). However, for three betaAR ligands there is a marked bias toward beta-arrestin signaling; these ligands stimulate beta-arrestin-dependent receptor activities to a much greater extent than would be expected given their efficacy for G protein-dependent activity. Structural comparison of these biased ligands reveals that all three are catecholamines containing an ethyl substitution on the alpha-carbon, a motif absent on all of the other, unbiased ligands tested. Thus, these studies demonstrate the potential for developing a novel class of 7TMR ligands with a distinct bias for beta-arrestin-mediated signaling.  相似文献   

16.
Human low-density lipoprotein receptor (LDLR) mRNA is unstable and contains four AU-rich elements (AREs) in the 3′-untranslated region (3′-UTR). The aim of this study was to verify the involvement of the 3′-UTR in the rapid degradation of LDLR mRNA. This study revealed that the 3′-UTR is necessary and sufficient for the degradation, and that the 1st ARE (ARE1) close to the stop codon associates with cytoplasmic proteins, and is primarily responsible for the degradation. Chenodeoxycholic acid (CDCA) treatment stabilized chimeric GFP-LDLR 3′-UTR mRNA and accompanied mitogen-activated protein kinase (MAPK) activation. The UV cross-linking assays showed that a protein of 80 kDa increasingly binds to the region including the ARE1 in response to CDCA-mediated MAPK activation.  相似文献   

17.
18.
Synthesis of proteins for iron homeostasis is regulated by specific, combinatorial mRNA/protein interactions between RNA stem-loop structures (iron-responsive elements, IREs) and iron-regulatory proteins (IRP1 and IRP2), controlling either mRNA translation or stability. The transferrin receptor 3'-untranslated region (TfR-3'-UTR) mRNA is unique in having five IREs, linked by AU-rich elements. A C-bulge in the stem of each TfR-IRE folds into an IRE that has low IRP2 binding, whereas a loop/bulge in the stem of the ferritin-IRE allows equivalent IRP1 and IRP2 binding. Effects of multiple IRE interactions with IRP1 and IRP2 were compared between the native TfR-3'-UTR sequence (5xIRE) and RNA with only 3 or 2 IREs. We show 1) equivalent IRP1 and IRP2 binding to multiple TfR-IRE RNAs; 2) increased IRP-dependent nuclease resistance of 5xIRE compared with lower IRE copy-number RNAs; 3) distorted TfR-IRE helix structure within the context of 5xIRE, detected by Cu-(phen)(2) binding/cleavage, that coincides with ferritin-IRE conformation and enhanced IRP2 binding; and 4) variable IRP1 and IRP2 expression in human cells and during development (IRP2-mRNA predominated). Changes in TfR-IRE structure conferred by the full length TfR-3'-UTR mRNA explain in part evolutionary conservation of multiple IRE-RNA, which allows TfR mRNA stabilization and receptor synthesis when IRP activity varies, and ensures iron uptake for cell growth.  相似文献   

19.
20.
Stimulation of DDT1 MF-2 vas deferens cells with epinephrine resulted in a time- and dose-dependent loss of alpha 1-adrenergic receptor-specific ligand binding. Regulation of alpha 1-adrenergic receptor mRNA was characterized. In monolayer culture, cells displayed 0.7 +/- 0.05 amol of alpha 1-adrenergic receptor mRNA/microgram of total cellular RNA. Epinephrine, which acts at both alpha 1- and beta 2-adrenergic receptors of DDT1 MF-2 cells, induced a short term (2-8 h) increase (50-70%) in the abundance of alpha 1-adrenergic receptor mRNA. Propranolol, a beta 2-adrenergic receptor antagonist, attenuated the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA but did not affect the decrease in alpha 1-adrenergic receptor-specific ligand binding. Phentolamine, an alpha 1-adrenergic receptor antagonist, did not attenuate the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA at 4 h but did block the decrease in alpha 1-adrenergic receptor-specific ligand binding. The half-life of the alpha 1-adrenergic receptor mRNA was approximately 7 h in untreated cells as well as in cells challenged with epinephrine. The epinephrine-promoted increase in alpha 1-adrenergic receptor mRNA was found to result from cross-regulation via beta 2-adrenergic receptors. Cholera toxin, forskolin, as well as the cyclic AMP analog CPT cAMP (8-(4-chlorophenylthio)adenosine 3':5'-cyclic monophosphate) increased the alpha 1-adrenergic receptor mRNA at 4 h, as did epinephrine in the presence of alpha 1-antagonists but not in the presence of a beta-adrenergic antagonist. This is the first report of heterologous up-regulation of mRNA levels of adrenergic receptors. Cross-regulation between alpha 1- and beta 2-adrenergic receptor-mediated pathways at 4 h occurs at the level of mRNA whereas later down-regulation of alpha 1-receptor mRNA and binding proceed via agonist activation of alpha 1-adrenergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号