首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the context of a study of the molecular basis of the antileukemia (murine) activity of diorganotin (IV) compounds, the interaction with rat hemoglobin (selected as a model protein) of the representative terms dimethyltin dichloride, dimethyltin glycylglycinate (Me2SnGlyGly), and dimethyltin L-cysteinate (Me2Sn-Cys) has been investigated by 119Sn M?ssbauer spectroscopy. In order to possibly determine the reaction pathway, aqueous model systems in Hepes buffer at pH 7.4 were also considered. The structural characteristics of reactants and products were advanced on the basis of semiempirical calculations of M?ssbauer nuclear quadrupole splitting parameters, delta E, by the point-charge model approach. In aqueous Hepes at pH 7.4, evidence was obtained for the formation of the five-coordinated species, trigonal bipyramidal type (tbp), Me2Sn(OH)2.Hepes(II), Me2Sn(OH)(GlyGly).Hepes(III), and Me2Sn(OH)Cys(IV) (see Fig. 1). Equatorial groups or atoms would be the Me radicals, as well as OH, N(peptide), and S(thiol), respectively. Hepes would coordinate to tin in axial position through the tertiary amino nitrogen, while cysteine would behave as a bidentate chelating agent, with an axially located amino group. Species (II), (III), and (IV) react with cysteine in aqueous Hepes at pH 7.4, yielding Me2Sn(OH)Cys(IV), as well as Me2SnCys2(V), where tin would be embedded into a tbp structure due to one cysteine probably chelating (equatorial S thiol and axial amino nitrogen), and one monodentate through S thiol. Species (II), (III), and (IV) react analogously with rat hemoglobin, primarily through the S thiol of a cysteine side chain, yielding pellets where the environment of tin could be tetrahedral, such as in Me2Sn(OH)(S thiol), (VI), and tetrahedral (IX) or tbp (V) in Me2Sn(Cys)(S thiol), where Cys would act either as chelating or monodentate. Further reaction of (VI) and (IX) could involve imidazole nitrogen atoms, N het, of histidine side chains, forming tetrahedral Me2Sn(S thiol)(N het), (VIII), or tbp Me2Sn(OH)(S thiol)(N het), (VII), and Me2Sn(Cys)(S thiol)(N het), (V) (see Figs. 1 and 5).  相似文献   

2.
Diorganotin(IV) complexes R(2)Sn(cap) (capH(2)=N-[(S)-3-mercapto-2-methylpropionyl]-L-proline; R=Me, Et, n-Bu and t-Bu) were prepared and characterised. The FTIR and Raman spectra demonstrated that the organotin(IV) moieties interact with the [S] atom of the ligand, while the other coordination sites are the carboxylate and the amide -CO groups. M?ssbauer Delta data showed that the diorganotin(IV) compounds adopt slightly distorted trigonal-bipyramidal (tbp) geometry. A single-crystal X-ray study was performed on the compound Me(2)Sn(cap): the Sn atom is five-coordinated in a distorted tbp environment, with two [O] atoms in the axial positions and the [S] and two [C] atoms in the equatorial (eq) plane. Each cap ligand coordinates to two different Sn atoms, and infinite zigzag chains are formed, directed parallel to each other and to the b axis of the unit cell. NMR (CDCl(3)) of the Me(2)Sn(IV) and n-Bu(2)Sn(IV) complexes indicated the presence of different oligomeric species.  相似文献   

3.
Equilibrium and spectroscopic (1H, 13C NMR and 119Sn M?ssbauer) studies in aqueous solution are reported for dimethyltin(IV) complexes of 2-hydroxyhippuric acid (Sal-Gly). Below pH 4, oxygen-coordinated complexes MLH and ML are formed. In the pH range 5-8.5, the species MLH(-1), predominates at any metal-to-ligand ratio. The ligand exchange of this species is slow on the NMR time scale, which allows its structural characterization by NMR spectroscopy: the coordination polyhedron around the tin atom is distorted trigonal bipyramidal, with tridentate [O-,N-,COO-] coordination of Sal-Gly, involving two equatorial methyl groups. The NMR results reveal that the main cause of the distortion of the polyhedron is the large CH3-Sn-CH3 angle of 136+/-4 degrees. The presented results supplement the data available on the dimethyltin(IV)-promoted amide deprotonation of peptides, and provide further arguments for the fundamental role of the carboxylate as an anchoring group in this process.  相似文献   

4.
The interactions of Et2SnCl2 with 5'-IMP and 5'-GMP have been studied in aqueous solutions by 1H- and 31P-NMR spectroscopy as a function of pH. At low pH values (< 4.0) Sn(IV) interacts with the pyrophosphate oxygens of these nucleotides. At intermediate pH values (4-9.5) no interaction of the metal with the nucleotides take place, while at pH > 9.5 the sugar O'2 and O'3 atoms are the preferred coordination sites. In addition, the solid adducts obtained from aqueous solutions at pH = 3-4 of the above interactions correspond to formulae; (Et2Sn)2(5'-IMP)2(H2O) and (Et2Sn)3(5'-GMP)2(OH)2(H2O)2 as their elemental analysis show. IR spectra and solid state 13C, 31P-NMR spectra 119Sn M?ssbauer and solution 119Sn-NMR spectra once more confirm the pyrophosphate involvement in bonding with Sn(IV) in oligomeric or polymeric structures and trigonal bipyramidal or octahedral geometries.  相似文献   

5.
Novel triorganotin(IV) complexes of two beta-lactamic antibiotics, 6-[D-(-)-beta-amino-p-hydroxyphenyl-acetamido]penicillin (=amoxicillin) and 6-[D-(-)-alpha-aminobenzyl]penicillin (=ampicillin), have been synthesized and investigated both in solid and solution states. The complexes corresponded to the general formula R(3)Sn(IV)antib*H(2)O (R=Me, n-Bu, Ph; antib=amox=amoxicillinate or amp=ampicillinate). Structural investigations about configuration in the solid state have been carried out by interpreting experimental IR and 119Sn M?ssbauer data. In particular, IR results suggested polymeric structures both for R(3)Sn(IV)amox.H(2)O and R(3)Sn(IV)amp*H(2)O. Moreover, both antibiotics appear to behave as monoanionic bidentate ligands coordinating the tin(IV) atom through ester-type carboxylate, as well as through the beta-lactamic carbonyl. Evidence that in none of these compounds water molecules were involved in coordination, was provided by thermogravimetric investigations. On the basis of 119Sn M?ssbauer spectroscopy it can be inferred that tin(IV) was pentacoordinate in all of the complexes in the solid state, showing an equatorial R(3)Sn(IV) trigonal bipyramidal (tbp) configuration. The nature of the complexes in solution state was investigated by using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, while an 119Sn spectrum was obtained for n-Bu(3)Sn(IV)amp*H(2)O. Although 1H- and 13C-NMR measurements suggested that in dimethyl sulfoxide (DMSO)-d(6) solution the polymeric structure collapsed, due to a solvolysis process of the beta-lactamic carbonyl bonding to the organometallic moiety, the complexes have been shown to maintain the same trigonal bipyramidal configuration at tin(IV) atom by the coordination of a DMSO molecule. Cytotoxic activity of these novel semisynthetic antibiotic derivatives has been tested towards spermatocyte chromosomes of the mussel Brachidontes pharaonis (Mollusca: Bivalvia) using two different chromosome-staining techniques such as Giemsa and CMA(3). The occurrence of typical colchicinized-like (c-like) mitoses on slides obtained from animals exposed to organotin compounds, directly confirmed the high mitotic spindle-inhibiting potency of these chemicals. In addition, by comparative analysis of spermatocyte chromosomes from untreated specimens (negative controls) and specimens treated with the triorganotin(IV) complexes, structural damages such as 'achromatic lesions' and 'chromosome breakages' have been identified.  相似文献   

6.
Dialkyltin(IV) and trialkyltin(IV) complexes of the deacetoxycephalo-sporin-antibiotic cephalexin [7-(d-2-amino-2-phenylacetamido)-3-methyl-3-cephem-4-carboxylic acid] (Hceph) have been synthesized and investigated both in solid and solution phase. Analytical and thermogravimetric data supported the general formula Alk(2)SnOHceph(.)H(2)O and Alk(3)Snceph(.)H(2)O (Alk=Me, n-Bu), while structural information has been gained by FT-IR, (119)Sn M?ssbauer and (1)H, (13)C, (119)Sn NMR data. In particular, IR results suggested polymeric structures both for Alk(2)SnOHceph(.)H(2)O and Alk(3)Snceph(.)H(2)O. Moreover, cephalexin appears to behave as monoanionic tridentate ligand coordinating the tin(IV) atom through ester-type carboxylate, as well as through beta-lactam carbonyl oxygen atoms and the amino nitrogen donor atoms in Alk(2)SnOHceph(.)H(2)O complexes. On the basis of (119)Sn M?ssbauer spectroscopy it could be inferred that tin(IV) was hexacoordinated in such complexes in the solid state, showing skew trapezoidal configuration. As far as Alk(3)Sn(IV)ceph(.)H(2)O derivatives are concerned, cephalexin coordinated the Alk(3)Sn moiety through the carboxylate acting as a bridging bidentate monoanionic group. Again, (119)Sn M?ssbauer spectroscopy led us to propose a trigonal configuration around the tin(IV) atom, with R(3)Sn equatorial disposition and bridging carboxylate oxygen atoms in the axial positions. The nature of the complexes in solution state was investigated by using (1)H, (13)C and (119)Sn NMR spectroscopy. Finally, the cytotoxic activity of organotin(IV) cephalexinate derivatives has been tested using two different chromosome-staining techniques Giemsa and CMA(3), towards spermatocyte chromosomes of the mussel Brachidontes pharaonis (Mollusca: Bivalvia). Colchicinized-like mitoses (c-mitoses) on slides obtained from animals exposed to organotin(IV) cephalexinate compounds, demonstrated the high mitotic spindle-inhibiting potentiality of these chemicals. Moreover, structural damages such as "chromosome achromatic lesions", "chromosome breakages" and "chromosome fragments" have been identified through a comparative analysis of spermatocyte chromosomes from untreated specimens (negative controls) and specimens treated with the organotin(IV) complexes.  相似文献   

7.
Complexes formed between carboxymethylcellulose (CMC) and the [Me(2)Sn(IV)]2+ cation have been prepared in the solid state and characterized by FTIR and M?ssbauer spectroscopy. The complexes contained CMC with varying molar weight and degree of carboxylation, and the complexes were isolated both from acidic and from neutral solutions at varying metal-to-ligand ratios. The characteristic vibration bands of the ligands were identified from their pH-dependent FTIR spectra. In the organotin(IV) complexes obtained at pH approximately 2, the -COO- moieties were found to be coordinated in a monodentate manner, and the band characteristic of the protonated (unbound) -COO- group(s) was also identified. The broad -OH band can be interpreted as the sum of the contributions of the alcoholic -OH groups of the anhydroglucose units and the mixed organotin aqua complexes. In complexes obtained at pH approximately 7, the broad -OH band significantly sharpens, which is probably due to the metal-ion induced deprotonation and subsequent coordination of the alcoholic -OH groups. At the same time, -COO- groups are also involved in the coordination of the metal ions, resulting in a complicated network that forms through inter- and intramolecular bridges. Quadrupole splitting (/Delta(exp)/) values observed by M?ssbauer spectroscopy revealed that the valence state of tin is four in all of the complexes. The /Delta(exp)/ values were compared with the calculated ones, obtained from the pqs theory. From these data, trigonal bipyramidal (Tbp) and octahedral (Oh) geometries have been suggested for the complexes obtained. It has also been concluded that the structure of the complexes prepared depends mainly on the pH of the solution, and it is relatively insensitive to the other parameters, like molar mass or degree of carboxylation of the ligand, or the metal-to-ligand ratio in the reaction mixture.  相似文献   

8.
Four new diorganotin(IV), (R = Me, Bu), and triorganotin(IV), (R = Me, Ph), derivatives of the phosphomycin disodium salt antibiotic[(1R,2S)-1,2-epoxypropylphosphonate]Na2 have been synthesized and their solid state configuration studied by X-ray crystallography, FT-IR, Mössbauer, UV-Vis spectroscopies. The X-ray diffraction investigation, performed on the bis[trimethyltin(IV)]phosphomycin, showed that the coordination geometry at all the Sn atoms is trigonal bipyramidal. The structure of the complex forms an unusual polymeric zig-zag planar network. The FT-IR and the 119Sn Mössbauer studies supported the formation of trigonal bipyramidal (Tbp) molecular structures, both in the diorganotin(IV) and triorganotin(IV) derivatives, even if, in the case of diorganotin(IV) derivatives, the tetrahedral structure cannot be a priori excluded. The group of phosphomycin coordinates the organotin(IV) centers originating a monodimensional polymeric network, as inferred by variable temperature 119Sn Mössbauer spectroscopy, used to investigate lattice dynamics of the bis-[trimethyltin(IV)]phosphomycin complex.  相似文献   

9.
Six novel triorganotin(IV) 2-maleimidopropanoato complexes: R3SnOCOCH3(CH)(COCH)2, (R: Me(l), Et(2), n-Pr(3), n-Bu(4), Ph(5), Bz(6) have been synthesized. Their solid-state configuration has been determined by FT IR and lI9mSn M?ssbauer spectroscopy. The tin(IV) atom is five-coordinated in all the complexes with 2-maleimidopropanoic acid behaving as a monoanionic bidentate ligand coordinating the tin(IV) atom through a chelating or bridging carboxylate group. The solution-state configuration has been elucidated by means of 1H-, 13C- and 119Sn-NMR spectroscopy which assigned a tetrahedron. Elemental analysis and FAB MS data also supported a 1:1 metal to ligand stoichiometry. The title complexes have been screened in vitro for anti-tumour, anti-fungal, anti-leishmanial and urease inhibition activities and displayed promising results.  相似文献   

10.
The interaction of native DNA with dimethyltin(IV) species   总被引:1,自引:0,他引:1  
The reaction of aqueous native DNA (calf thymus) with the solvated organotin(IV) species [(CH3)2SnCl2(C2H5OH)n], as well as with [(CH3)2Sn(OH)(H2O)n]+ and (CH3)2Sn(OH)2 (i.e., the hydrolysis products of aqueous (CH3)2SnCl2 at pH approximately 5 and pH approximately 7.4 respectively), was investigated by 119Sn M?ssbauer spectroscopy. The addition of [(CH3)2SnCl2(C2H5OH)n] to DNA yielded a solid product, possibly (CH3)2Sn(DNA phosphodiester)2, where the environment of the tin atom is trans-octahedral with linear CSnC skeleton, and the equatorial atoms may consist of oxygen or nitrogen from water as well as from the nucleic acid constituents. No interaction with DNA apparently takes place due to hydrolyzed dimethyltin(IV) species, which occur in aqueous phases at approximate physiological pH values. The reaction pathway is then assumed to require weakly solvated, easily dissociable species such as [(CH3)2SnCl2(C2H5OH)n], which would imply in vivo reactivity of cellular DNA with organotins from hydrophobic sites.  相似文献   

11.
Five new organotin(IV) molecules with the heterocyclic thioamides; 2-mercaptobenzothiazole (Hmbzt), 5-chloro-2-mercaptobenzothiazole (Hcmbzt), 3-methyl-2-mercaptobenzothiazole (mmbzt) and 2-mercaptonicotinic acid (H(2)mna) of formulae [(n-C(4)H(9))(2)Sn(mbzt)(2)] (1), [(C(6)H(5))(2)Sn(mbzt)(2)] (2), [(CH(3))(2)Sn(cmbzt)(2)].1.7(H(2)O)] (3), [(n-C(4)H(9))(2)SnCl(2)(mmbzt)(2).(CH(2)Cl(2))] (4) and [[(C(6)H(5))(3)Sn](2)(mna).[(CH(3))(2)CO]] (5) have been synthesized and characterized by elemental analysis, 1H-, 13C-NMR, FT-IR and M?ssbauer spectroscopic techniques. Crystal structures of molecules 1, 3 and 5 have been determined by X-ray diffraction at 173(1) K (1 and 5) and 293(2) K (3). Compound 1 C(22)H(26)N(2)S(4)Sn, is monoclinic, space group C2/c, a=44.018(2), b=8.8864(5), c=12.8633(7) A, beta=104.195(5) degrees, Z=8. Compound 3 is also monoclinic, space group P2(1)/c and a=17.128(2) A, b=17.919(2) A, c=7.3580(10) A, beta=98.290(10) degrees, Z=4. In both molecules 1 and 3, two carbon atoms from aryl groups, two sulfur and two nitrogen atoms from thione ligands form a distorted octahedral geometry around tin(IV) with trans-C(2), cis-N(2), cis-S(2) configurations. Compound 5 C(45)H(39)NO(3)SSn(2) is monoclinic, space group P2(1)/n, a=9.1148(2) A, b=29.2819(6), c=15.5556(4) A, beta=106.2851(9) degrees, Z=4. Complex 5 contains two [(C(6)H(5))(3)Sn(IV)] moieties linked by a double deprotonated 2-mercaptonicotinic acid (H(2)mna). Both tin(IV) ions are five coordinated. This complex is the an example of a pentacoordinated Ph(3)SnXY system with an axial-equatorial arrangement of the phenyl groups at Sn(1) atom. Compounds 1, 3 and 5 were tested for in vitro cytotoxicity against the cancer cell line of sarcoma cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (benzo[a]pyrene) carcinogenesis. Compound 5 exhibits strong cytotoxic activity, while complexes 1 and 3 show less cytotoxic activity.  相似文献   

12.
Four new organotin(IV) chlorin derivatives, [chlorin=chlorin-e(6)=21H,23H-porphine-2-propanoic acid, 18-carboxy-20-(carboxymethyl)-8-ethenyl-13-ethyl-2,3-di-hydro-3,7,12,17-tetramethyl-(2S-trans)-], with formula (R(2)Sn)(3)(chlorin)(2).2H(2)O (R=Me, n-Bu) and (R(3)Sn)(3)chlorin.2H(2)O (R=Me, Ph) have been synthesized. The solid state and solution phase structures have been investigated by FT-IR, (119)Sn M?ssbauer, (1)H and (13)C NMR spectroscopy. In the solid state, (R(2)Sn)(3)(chlorin)(2).2H(2)O complexes contain six coordinated Sn(IV), in a skew trapezoidal environment by forming trans-R(2)SnO(4) polymeric units. As far as (R(3)Sn)(3)chlorin.2H(2)O complexes are concerned, Sn(IV) is five coordinated in a polymeric (oligomeric) trigonal bipyramidal environment and eq-R(3)SnO(2) units, in the solid state. In saturated solutions, a polymeric structure comparable to the solid phase, with carboxylate groups of the ligand behaving in monoanionic bidentate fashion bridging Sn(IV) atoms, was detected for the (Me(3)Sn)(3)chlorin.2H(2)O complex, while in more diluted ones a tetrahedral configuration for the trimethyltin(IV) moieties was observed. Cytotoxic activity of the novel organotin(IV) chlorin was investigated in order to assay the effect on sea urchin embryonic development. The results obtained demonstrated that (n-Bu(2)Sn)(3)(chlorin)(2).2H(2)O and (Ph(3)Sn)(3)chlorin.2H(2)O exerted the antimitotic effect on the early stages of sea urchin development. In addition, the cytotoxic effect exerted by (n-Bu(2)Sn)(3)(chlorin)(2).2H(2)O appeared with necrosis of the blastomeres, which were clearly destroyed. After treatment with (Ph(3)Sn)(3)chlorin.2H(2)O, a programmed cell death was triggered, as shown by light microscope observations through morphological assays. The apoptotic events in 2-cell stage embryos revealed: (i) DNA fragmentation, with the TUNEL reaction (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling); (ii) phosphatidylserine translocation in the membrane, with Annexin-V assay and (iii) cytoplasm blebbing, with the TUNEL reaction. The results demonstrated that the novel compound (Ph(3)Sn)(3)chlorin.2H(2)O was the most toxic derivative, by exerting antimitotic effect very early and by triggering apoptosis in the 2-cell stage of sea urchin embryonic development.  相似文献   

13.
Glucose-6-phosphate dehydrogenase [D-glucose-6-phosphate: NADP oxidoreductase, EC. 1. 1. 1. 49] obtained from spores of Bacillus subtilis PCI 219 strain was partially purified by filtration on Sephadex G-200, ammonium sulfate fractionation and chromatography on DEAE-Sephadex A-25 (about 54-fold). The optimum pH for stability of this enzyme was about 6.3 and the optimum pH for the reaction about 8.3. The apparent Km values of the enzyme were 5.7 X 10(-4) M for glucose-6-phosphate and 2.4 X 10(-4) M for nicotinamide adenine dinucleotide phosphate (NADP). The isoelectric point was about pH 3.9. The enzyme activity was unaffected by the addition of Mg++ or Ca++. The inactive glucose-6-phosphate dehydrogenase obtained from the spores heated at 85 C for 30 min was not reactivated by the addition of ethylenediaminetetraacetic acid, dipicolinic acid or some salts unlike inactive glucose dehydrogenase.  相似文献   

14.
Abstract Reactions between the anticancer drug titanocene dichloride (Cp2TiCl2) and various nucleotides and their constituents in aqueous solution or N,N-dimethylformamide (DMF) have been investigated by 1H and 31P NMR spectroscopy and in the solid state by IR spectroscopy. In aqueous solution over the pH* (pH meter reading in D2O) range 2.3-6.5, CMP forms one new species with Ti(IV) bound only to the phosphate group. In acidic media at pH*<4.6, three species containing titanocene bound to the phosphate group of dGMP, AMP, dTMP and UMP are formed rapidly. The bases also appear to influence titanocene binding. Only one of these Ti(IV)-bound species can be detected in the pH* range of 4.6-6.5 in each case. The order of reactivity towards Cp2TiCl2(aq) at pH* ca. 3 is GMP>TMP approximately AMP > CMP. At pH* > 7.0, hydrolysis of Cp2TiCl2 predominated and little reaction with the nucleotides was observed. Binding of deoxyribose 5'-phosphate and 4-nitrophenyl phosphate to Cp2TiCl2(aq) via their phosphate groups was detected by 31P NMR spectroscopy, but no reaction between Cp2TiCl2(aq) and deoxyguanosine, 9-ethylguanine or deoxy-D-ribose was observed in aqueous solution. The nucleoside phosphodiesters 3',5'-cyclic GMP and 2',3'-cyclic CMP did not react with Cp2TiCl2(aq) in aqueous solution; however, in the less polar solvent DMF, 3',5'-cyclic GMP coordination to [Cp2Ti]2+ via its phosphodiester group was readily observed. Binding of titanocene to the phosphodiester group of the dinucleotide GpC was also observed in DMF by 31P NMR. The nucleoside triphosphates ATP and GTP reacted more extensively with Cp2TiCl2(aq) than their monophosphates; complexes with bound phosphate groups were formed in acidic media and to a lesser extent at neutral pH. Cleavage of phosphate bonds in ATP (and GTP) by Cp2TiCl2(aq) to form inorganic phosphate, AMP (or GMP) and ADP (or GDP) was observed in aqueous solutions. In addition, titanocene binding to ATP was not inhibited by Mg(II), but the ternary complex titanocene-ATP-Mg appeared to form. These reactions contrast markedly with those of the drug cisplatin, which binds predominantly to the base nitrogen atoms of nucleotides and only weakly to the phosphate groups. The high affinity of Ti(IV) for phosphate groups may be important for its biological activity.  相似文献   

15.
A specific colorimetric assay for the determination of glucose-6-phosphate (G6P) was developed. This assay is based on the oxidation of G6P in the presence of glucose-6-phosphate dehydrogenase (G6PD) and nicotinamide adenine dinucleotide phosphate (NADP+); the NADPH thereby generated reduces the tetrazolium salt WST-1 [2-(4-indophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium, monosodium salt] to water-soluble yellow-colored formazan with 1-methoxy-5-methylphenazium methylsulfate (1-mPMS) as an electron carrier. The assay is optimized for reaction buffer pH, enzyme/dye concentration, and reaction time course. The limit of detection of the assay is 0.15 μM (15 pmol/well). The usefulness of the assay is demonstrated by the accurate measurement of the G6P concentration in fetal bovine serum (FBS).  相似文献   

16.
The synthesis and characterization of new coordination compounds of some diorganotins(IV) with N-methylglycine (sarcosine) are reported; all these derivatives mainly tend to assume a chelate structure. As single crystals were not obtained, a large number of experimental techniques were used to accomplish a definitive characterization and determination of their structure. Results obtained by (1)H/(119)Sn NMR, FT-IR and (119)mSn-M?ssbauer spectroscopy and thermogravimetric analysis allow us to deduce the pentacoordination for 1:1 (Sn/sarcosine) derivatives [R(2)SnCl(2)(Sar)](+)Cl(-) (R=Me, n-Bu) in a trigonal-bipyramidal structure, and the hexacoordination for 1:2 complexes [R'(2)Sn(Sar)(2)](2+)2Cl(-) (R'=Me, n-Bu, Ph) in an octahedral structure; however, the probability of partially or totally non-chelate structures for some adducts increases with the steric hindrance of the R/R' groups and the number of the sarcosine molecules bound to the tin atom, so that they give rise to fluxional equilibria in solution. Finally, the synthesized compounds have been tested for in vitro cytotoxic activity against human adenocarcinoma HeLa cells showing, in some cases, strong activity even at low concentration.  相似文献   

17.
Four new triphenyltin(IV) complexes of composition Ph3SnLH (where LH = 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoate) (1-4) were synthesized and characterized by spectroscopic (1H, 13C and 119Sn NMR, IR, 119Sn Mössbauer) techniques in combination with elemental analysis. The 119Sn NMR spectroscopic data indicate a tetrahedral coordination geometry in non-coordinating solvents. The crystal structures of three complexes, Ph3SnL1H (1), Ph3SnL3H (3), Ph3SnL4H (4), were determined. All display an essentially tetrahedral geometry with angles ranging from 93.50(8) to 124.5(2)°; 119Sn Mössbauer spectral data support this assignment. The cytotoxicity studies were performed with complexes 1-4, along with a previously reported complex (5) in vitro across a panel of human tumor cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. The screening results were compared with the results from other related triphenyltin(IV) complexes (6-7) and tributyltin(IV) complexes (8-11) having 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoates framework. In general, the complexes exhibit stronger cytotoxic activity. The results obtained for 1-3 are also comparable to those of its o-analogs i.e. 4-7, except 5, but the advantage is the former set of complexes demonstrated two folds more cytotoxic activity for the cell line MCF-7 with ID50 values in the range 41-53 ng/ml. Undoubtedly, the cytotoxic results of complexes 1-3 are far superior to CDDP, 5-FU and ETO, and related tributyltin(IV) complexes 8-11. The quantitative structure-activity relationship (QSAR) studies for the cytotoxicity of triphenyltin(IV) complexes 1-7 and tributyltin(IV) complexes 8-11 is also discussed against a panel of human tumor cell lines.  相似文献   

18.
Diorganotin(IV) complexes of N-acetyl-l-cysteine (H2NAC; (R)-2-acetamido-3-sulfanylpropanoic acid) have been synthesized and their solid and solution-phase structural configurations investigated by FTIR, Mössbauer, 1H, 13C and 119Sn NMR spectroscopy. FTIR results suggested that in R2Sn(IV)NAC (R = Me, Bu, Ph) complexes NAC2− behaves as dianionic tridentate ligand coordinating the tin(IV) atom, through ester-type carboxylate, acetate carbonyl oxygen atom and the deprotonated thiolate group. From 119Sn Mössbauer spectroscopy it could be inferred that the tin atom is pentacoordinated, with equatorial R2Sn(IV) trigonal bipyramidal configuration. In DMSO-d6 solution, NMR spectroscopic data showed the coordination of one solvent molecule to tin atom, while the coordination mode of the ligand through the ester-type carboxylate and the deprotonated thiolate group was retained in solution. DFT (Density Functional Theory) study confirmed the proposed structures in solution phase as well as the determination of the most probable stable ring conformation. Biological investigations showed that Bu2SnCl2 and NAC2 induce loss of viability in HCC cells and only moderate effects in non-tumor Chang liver cells. NAC2 showed lower cytotoxic activity than Bu2SnCl2, suggesting that the binding with NAC2− modulates the marked cytotoxic activity exerted by Bu2SnCl2. Therefore, these novel butyl derivatives could represent a new class of anticancer drugs.  相似文献   

19.
A mathematical model based on kinetic data taken from the literature is presented for the pentose phosphate pathway in fasted rat liver steady-state. Since the oxidative and non oxidative pentose phosphate pathway can act independently, the complete (oxidative + non oxidative) and the non oxidative pentose pathway were simulated.Sensitivity analyses are reported which show that the fluxes are mainly regulated by D-glucose-6-phosphate dehydrogenase (for the oxidative pathway) and by transketolase (for the non oxidative pathway). The most influent metabolites were the group ATP, ADP, P1 and the group NADPH, NADP+ (for the non oxidative pathway).Abbreviations GK Glucokinase, (E.C. 2.7.1.2.) - G6PDH D-glucose-6-phosphate dehydrogenase, (E.C. 1.1.1.49) - PLase 6-Phosphogluconelactonase, (E.C. 3.1.1.31.) - PGIcDH 6-Phosphogluconate dehydrogenase, (E.C. 1.1.1.44) - RPI D-ribose-5-phosphate keto-isomerase, (E.C. 5.3.1.6) - TK D-sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate glycol-aldehyde transferase, (E.C. 2.2.1.1.) - TA D-sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate dihydroxyacetone transferase, (E.C. 2.2.1.2) - EP D-ribulose-5-phosphate-3-epimerase, (E.C. 5.1.3.1) - PGI D-glucose-6-phosphate keto-isomerase, (E.C. 5.3.1.9) - TPI D-glyceraldehyde-3-phosphate keto-isomerase, (E.C.5.3.1.1)  相似文献   

20.
D-Glucose-6-phosphate dehydrogenase is a regulatory enzyme of the oxidative pentose phosphate pathway in Schizasaccharomyces pombe. The enzyme is subject to negative cooperative regulation by D-glucose-6-phosphate as characterized by the Hill coefficient of 0.68 +/- 0.04. D-Glyceraldehyde-3-phosphate and D-ribulose-5-phosphate rectify the negative cooperativity as evidenced from a change in the Hill coefficients to 0.98 +/- 0.05 and 1.02 +/- 0.05, respectively. These pentose phosphate pathway intermediates also inhibit the enzyme competitively with respect to D-glucose-6-phosphate. Thus, D-glucose-6-phosphate dehydrogenase provides an avenue for regulating the partitioning of D-glucose between the redundant branches of the oxidative phosphate pathway in S. pombe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号