首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study examined the direct interactions between intertidal seagrasses (Zosteraceae) and burrowing ghost shrimps (Callianassidae) and their influence on associated infaunal assemblages. Reciprocal transplant experiments conducted in two temperate regions revealed different interactions between both types of organism. In the U.S.A., seagrass prospered in all treatments, irrespective of the presence of ghost shrimp, whilst ghost shrimp declined in plots containing seagrass. In New Zealand, neither transplanted ghost shrimp nor seagrass became established in experimental plots, at the same time, neither type of organism appeared to be affected by the experimental addition of transplants. The differences in interactions between seagrass and ghost shrimp appeared to be related to seasonal differences in the timing of the transplant experiments and the pairing of particular ghost shrimp and seagrass species in each region. Infaunal assemblages showed distinct differences between seagrass and ghost shrimp treatments and reflected the dominant type of organism present. In treatments where transplanted seagrass or ghost shrimp became established, assemblage composition shifted in accordance with the type of transplanted organism. Differences in assemblage composition were characterised by higher relative abundances of discriminating taxa in treatments dominated by seagrass. The overall patterns of infaunal assemblage composition were correlated with a number of variables including the number of shoots, above-, below-ground seagrass biomass, % fines/sand, % total organic carbon, and sediment chlorophyll a. Findings from this study highlight the functional importance of intertidal seagrasses and burrowing ghost shrimps and reveal some of the ecological repercussions associated with changes in the distribution of these sympatric ecosystem engineers.  相似文献   

2.
Marbà N  Hemminga MA  Duarte CM 《Oecologia》2006,150(3):362-372
The allometric scaling of resource demand and translocation within seagrass clones to plant size (i.e. shoot mass and rhizome diameter), shoot production and leaf turnover was examined in situ in eight seagrass species (Cymodocea nodosa, Cymodocea serrulata, Halophila stipulacea, Halodule uninervis, Posidonia oceanica, Thalassodendron ciliatum, Thalassia hemprichii and Zostera noltii), encompassing most of the size range present in seagrass flora. One fully developed shoot on each experimental rhizome was incubated for 2–3 h with a pulse of NaH13CO3 (235 μmol) and 15NH4Cl (40 μmol). The mobilisation of incorporated tracers across the clone was examined 4 days later. Carbon and nitrogen demand for shoot production across seagrass species scaled at half of the shoot mass, whereas seagrass leaves incorporated tracers (13C and 15N) at rates proportional to the shoot mass. The shoots of all seagrass species shared resources with neighbours, particularly with younger ones. The time scales of physiological integration and the absolute amount of resources shared by seagrass ramets scaled at 2.5 power of the rhizome diameter. Hence, the ramets of larger species were physiologically connected for longer time scales and share larger absolute amounts of resources with neighbours than those of smaller species. The different pattern of resource translocation exhibited by seagrasses helps explain the ecological role displayed by these species and the success of large seagrasses colonising nutrient-poor coastal areas, where they often dominate.  相似文献   

3.
Results of semi-quantitative observations and quantitative sampling of seagrasses at coastal and offshore sites along the western Arabian Gulf are presented. Overall seagrass cover (all species together) shows significant positive correlation with latitude, but not with salinity, temperature or depth. The same pattern is shown by Halodule uninervis (Forsk.) Aschers., the dominant species. Mean seagrass biomass ranged from 53–235 g m-2 (dry weight). These values are comparable with biomass estimates from regions in which environmental conditions are generally less extreme than in the Gulf. Seagrass biomass is significantly negatively correlated with depth and sediment grain size. No significant correlation is apparent between seagrass biomass and factors such as season, salinity, or concentrations of nutrients and heavy metals measured. It is pointed out that any correlations observed are not necessarily taken to imply causality.  相似文献   

4.
Here we demonstrate, through experimental iron additions to a Mediterranean seagrass meadow, that iron plays a pivotal role in seagrass systems on carbonate sediments, directly through its role as a limiting nutrient, and indirectly by stimulating phosphorus recycling through the activity of the enzyme alkaline phosphatase and by buffering the development of reduced conditions in sediments. Iron additions were performed throughout the active root zone (30 cm depth) to two Posidonia oceanica meadows, one on organic-enriched sediments and one on organic poor sediments (Reference). Seagrass growth, nutrient incorporation and sediment biogeochemical conditions were followed for four months. Iron additions had positive effects on seagrass growth (leaf production increased with 55%) and nutrient incorporation (increased 46–91%) in the organic-enriched site, increasing to levels found at the Reference site. There was no effect of iron additions in the Reference seagrass meadow suggesting that iron was not the most important controlling factor at this site. The iron pools were about two times higher compared to the organic-enriched site. The main effect on the sediment biogeochemical conditions at the organic-enriched site was a suppression of sulfate reduction activity to the levels encountered at the Reference site (6.7 mmol m−2d−1 vs. 4.7–5.9 mmol m−2d−1). This suggests that the sulfide stress on the seagrasses was removed and that the iron availability increased due to reduced precipitation of iron-sulfides and thus improving seagrass growth conditions in these organic-enriched sediments.  相似文献   

5.
A bimonthly sampling of the seaweed-seagrass resource of Mararison Island, Culasi Antique, was undertaken over 1 year to assess the species composition, similarity of taxa, and biomass (dry weight [d.w.] g m?2) at seven localities. A total of 45 species was identified: 17 Chlorophyta, seven Phaeophyta, 15 Rhodophyta, one Cyanophyta and five seagrasses. Except for some Rhodophyta and Syringodium isoetifolium (Ascherson) Dandy, the occurrence of species between stations was not significantly different; however, differences in biomass between sampling time (month) were significant. Identical taxa between stations were determined. The highest (40) and lowest (22) number of species collected were in May and July, respectively. The species were most abundant from March to May (dry months) and sparse from July to September (wet months). The most abundant species were: Sargassum polycystum C. Agardh (399 g m?2) (Phaeophyta), Dictyosphaeria cav-ernosa (Forsskat) Borgesen (43.1 g m?2) (Chlorophyta), Acanthopeitis japonica Okamura (97.2 gm?2) (Rhodophyta) and Thalassia hemprichii (Ehrenberg) Ascherson (1370 g m?2; seagrass). The Phaeophyta were abundant in March, and the Chlorophyta and Rhodophyta in May, while the seagrasses were abundant in September. Some species occurred only during the dry months: two Phaeophyta, nine Chlorophyta and five Rhodophyta. All the seagrasses were found year-round. Almost all of the seaweeds (39/45) were found associated with seagrass. The number of seaweeds in Mararison Island was higher than for seagrasses but the total biomass of the latter was much higher than the combined biomass of the seaweeds.  相似文献   

6.
As seagrass bed restoration by seeding becomes more common, it is necessary to develop a simple and reliable method to improve the efficiency of seed-based restoration. In this study, we describe a novel method using seed ball burial for eelgrass restoration. Using this method, seeds were wrapped in a wet mud ball, which represented a transplant unit, and the balls were then buried in the sediment. Three experiments (proof of concept study, main study, and large-scale restoration) were conducted to test this method at three degraded sites (Rizhao, Qingdao, and Tangshan) with different environmental conditions. The density of seedlings and seedling shoots was 54 and 110 per m2, respectively, in Rizhao, a site with coarser sediment and higher temperatures. Seedling survival in Qingdao reached 46.67 ± 9.46%. Relatively low seedling survival (26.67 ± 7.03%) in Tangshan was induced by local waves and currents. Seedling survival was also low (ca. 15% in April and 2% in July) at the large-scale restoration site , reflecting a mismatch between the environment at this site and the seed ball restoration method. In conclusion, our study provides evidence of the effectiveness of a novel seagrass seed planting method referred to as seed balls.  相似文献   

7.
8.
Abstract Mensurative experiments investigated the effects of different observers on estimates of the density of shoots of two species of seagrass: Posidonia australis Hook and Zostera capricorni Aschers. Balanced programmes of sampling were used to examine variation in counts of seagrass shoots attributable to different observers, sizes of quadrats, depths and locations within large beds of each species of seagrass. A separate experiment examined differences between novice observers and a more experienced observer, when an ‘optimal’ size of sampling unit was used. Estimated densities of Zostera shoots varied inconsistently among observers, quadrats, depths and locations. Differences between observers were not affected by the size of quadrat used to count Posidonia shoots, but varied between locations in the seagrass bed. Experience had only a minor impact on biases. Only two of 12 novices produced counts that were different from the experienced observer. These results emphasize the importance of considering both accuracy and precision in the design of field studies of seagrasses.  相似文献   

9.
Zostera marina is the dominant seagrass species in coastal lagoons on the western coast of Baja California Peninsula, and due to its coastal location it is threatened by natural and anthropogenic factors, as is happening in Puerto San Carlos, B.C.S., where a fish cannery unloads its wastewater to the beach. Apparently an extensive intertidal meadow replacement was established by great amounts of green macroalgae. We evaluated the possibility to mitigate the impacts of this cannery with transplants of Z. marina meadow using adult plants. The transplant experiment was made in two different seasons for which two undisturbed donor meadows were chosen: El Cuervo and San Carlitos. The winter one obtained a 30% and in San Carlitos 90% after 13 months and the autumn transplant in San Carlos obtained a 0% of survival after 3 months. The results of these transplant activities were reflected in the shoot density at the end of the experiment (San Carlos was of 482 shoots/m2 and San Carlitos of 818 shoots/m2s and agree with the density of the natural meadows. This experiment shows that it is possible to develop a small-scale seagrass restoration as mitigation for Baja California coastal lagoons which are under severe threat for coastal development.  相似文献   

10.
Despite the fact that iron plaque formation is ubiquitous in aquatic macrophytes and has been known for several decades, there are few reports of plaque occurrence in seagrasses to date. Herein we present the first microscopical observation and chemical quantification of iron (Fe) plaques on the shoots, rhizomes and roots of the seagrass Cymodocea serrulata (R. Brown) Ascherson collected from intertidal seagrass beds in Thailand. Plaques were observed on shoot bases, rhizomes and roots with the highest concentrations of iron in the plaques from the roots, reaching an average of 509 μmol gDW−1. Interestingly, the most negative stable sulphur isotope (δ34S) values, indicating H2S intrusion into the plants occurred in the sampling site with the most intense root oxidizing capacity, as indicated by a greater Fe plaque formation. These apparently contradictory findings may be attributed to oxidizing capacity of root tips and root hairs sufficient to promote Fe(III) deposition in the rhizosphere, preceding deposition of plaques on the roots. While this rhizosphere oxidation may result in a more efficient sulphide detoxification during the day photosynthetic phase, root tips and hairs may serve as vulnerable sites for sulphide intrusion at night. The presence of Fe plaque on C. serrulata roots and rhizomes reveals the complexity of seagrass–sediment interactions and deserves further attention to understand if this is a local phenomenon or a newly discovered adaptive mechanism in seagrasses.  相似文献   

11.
Marine aquaculture is an activity that has induced severe local losses of seagrass meadows along the coastal areas. The purpose of this study was to evaluate the capacity of an area degraded by fish‐farm activities to support Posidonia oceanica seedlings. In the study site, a bay in the southeast coast of Spain where part of a meadow disappeared by fish‐farm activities, seedlings inside mesh‐pots were planted in three areas. Two plots were established in each area, one in P. oceanica dead matte and another inside a P. oceanica meadow. To evaluate if sediment conditions were adequate for the life of the seedlings, half of them were planted in direct contact with the sediment and the other half were planted above the surface of the sediment in each plot. Monitoring during 1 year showed that there were large differences in seedling survival between the dead matte and the P. oceanica meadow. While seedlings planted in dead matte had a high survivorship after 1 year (75%), seedlings planted in P. oceanica progressively died (survivorship of 20% after 1 year). The average leaf length of the seedlings surviving in the two substrata was not different, but the leaf area per seedling was lower in the seedlings growing inside the P. oceanica meadow during most part of the year. Seedling survivorship and vegetative development were not affected by the level of planting and suggest that the sediment conditions are adequate for the life of P. oceanica seedlings.  相似文献   

12.
The uptake of nitrate, ammonium and phosphate was examined in vitro in seedlings of the seagrass Amphibolis antarctica ((Labill.) Sonder ex Aschers.). Uptake of all three nutrients was significantly correlated with external concentration up to 800 µ g l–1. The uptake of nitrate (0–200 µ g NO3-N g dry wt–1 h–1) was significantly lower than the uptake of ammonium (0–500 µ g NH4-N g dry wt–1 h–1), suggesting that the seedlings have a higher affinity for this form of nitrogen in the water column.Data were in general agreement with uptake rates recorded for other seagrasses, notably Zostera marina. In comparison to the dominant macroalgae for the same region, seedlings had either similar or higher uptake rates in relation to external concentration, lending support to the hypothesis that seedlings, which do not possess roots, behave like macroalgae in terms of nutrient acquisition from the water column.A comparison with literature data on adult seagrass suggests, however, that seagrasses show lower uptake rates than macroalgae suggesting that the macroalgae, which are totally reliant on the water column for nutrients, are more efficient at uptake than seagrasses which may potentially use the sediment for a nutrient source.  相似文献   

13.
Seagrasses and lucinid bivalves inhabit highly reduced sediments with elevated sulphide concentrations. Lucinids house symbiotic bacteria (Ca. Thiodiazotropha) capable of oxidising sediment sulphide, and their presence in sediments has been proposed to promote seagrass growth by decreasing otherwise phytotoxic sulphide levels. However, vast and productive seagrass meadows are present in ecosystems where lucinids do not occur. Hence, we hypothesised that seagrasses themselves host these sulphur-oxidising Ca. Thiodiazotropha that could aid their survival when lucinids are absent. We analysed newly generated and publicly available 16S rRNA gene sequences from seagrass roots and sediments across 14 seagrass species and 10 countries and found that persistent and colonising seagrasses across the world harbour sulphur-oxidising Ca. Thiodiazotropha, regardless of the presence of lucinids. We used fluorescence in situ hybridisation to visually confirm the presence of Ca. Thiodiazotropha on roots of Halophila ovalis, a colonising seagrass species with wide geographical, water depth range, and sedimentary sulphide concentrations. We provide the first evidence that Ca. Thiodiazotropha are commonly present on seagrass roots, providing another mechanism for seagrasses to alleviate sulphide stress globally.Subject terms: Microbial ecology, Plant ecology, Soil microbiology  相似文献   

14.
Within the scope of a seagrass monitoring program in the Novigrad Sea, Central Croatian Adriatic, we predicted that the annual variability in coverage of seagrasses (Zostera marina, Zostera noltii, and Cymodocea nodosa) can be partially explained by the annual variability in sediment translocation. From 23 fixed DGPS-referenced monitoring video transects followed over three years (June 2007-2009), we calculated annual (i) changes in interior bed seagrass coverage, (ii) gain in seagrass at the lower edge of the bed and seagrass bed expansion, and (iii) accumulation of sediment, its depth dependence, and the associated changes in transect slope. We found that in 2007 to 2008, the year with net sediment accumulation, seagrass coverage increased and the bed expanded. In both years seagrass cover within the seagrass bed increased with increasing sediment accumulation, while seagrass bed expansion was highest under intermediate sedimentation rates. Boat-based videographic monitoring can document both natural sediment movement along the depth gradient, and species-specific responses necessary for informed management of submerged aquatic vegetation in the Adriatic Sea.  相似文献   

15.
Survival, growth, aboveground biomass accumulation, sediment surface elevation dynamics and nitrogen accumulation in sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m−2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1,171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ among treatments. Rates of surface sediment accretion (means ± SE) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm year−1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m−2, respectively, showing highly significant differences among treatments. Mean (±SE) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and −0.3 (±0.1) mm year−1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m−2, respectively. All planted treatments accumulated greater nitrogen concentrations in the sediment compared to the unplanted control. Sediment %N was significantly different among densities which suggests one potential causal mechanism for the facilitatory effects observed: high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further research, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation processes that may be crucial in mangrove ecosystem adaptation to sea-level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather, facilitatory effects enhanced survival at high densities, suggesting that managers may be able to take advantage of high plantation densities to help mitigate sea-level rise effects by encouraging positive sediment surface elevation.  相似文献   

16.
This literature review summarizes the limiting factors for seagrass occurrence, and the effect positive feedbacks in seagrass systems have on these threshold levels. Minimum water depth is mainly determined by wave orbital velocity, tide and wave energy; and maximum depth by light availability. Besides these, other limiting factors occur, such as an upper current velocity threshold, above which seagrasses are eroded, or a lower water current velocity threshold below which carbon exchange is limiting. In some locations organic matter content, sulphide concentration or nutrient availability are limiting. N-limitation is mainly reported from temperate terrigenous sediments, and P-limitation from tropical carbonate sediments. However, limiting factors sometimes change over the year, switching from light limiting to N- or P-limiting, and show at times regional variation. The effect seagrasses have on current reduction, trapping sediment and decreasing resuspension can lead to several changes in both the sediment and the water column. In the sediment, an increase in nutrient availability has been reported, and increases in organic matter, sediment height increases, and burial of the seagrasses. In the water column the effect is a reduction of the turbidity through a decrease of the sediment load, decreasing the attenuation coefficient, thereby increasing light availability. Due to the large effect light availability has on seagrass occurrence, the effect of an improvement of the light conditions by a reduction of the turbidity by seagrasses is probably the most important positive feedback in seagrass systems. The latter effect should therefore be incorporated in models that try to understand or predict seagrass changes. Generalization are difficult due a lack of studies that try to find relationships between seagrass architecture and sediment trapping (studying both turbidity reduction and nutrient increase) on a global level under a variety of different conditions. Areas for research priorities are identified.  相似文献   

17.
A study was undertaken to evaluate the interrelationship between the presence of seagrasses, Zostera marina and Halodule wrightii, and the physical and chemical properties of sediments in a coastal plain estuary near Beaufort, North Carolina. In sediments underlying a cover of seagrass, silt-clay, organic matter, exchangeable ammonium, ammonium dissolved in pore waters and total nitrogen were larger than in unvegetated profiles. The magnitude of the physical and chemical properties of sediments varied according to the location of the station in relation to the vegetation, as well as the continuity in the distribution of the seagrass. The largest pools of nitrogen, the finest sediment texture, and the greatest organic matter content were in sediments associated with the mid bed regions of seagrass meadows, intermediate at the edges of the bed and small isolated patches of grass, and least in unvegetated substrate.General conclusions from this study are: 1) once established, seagrasses appear capable of modifying the sediment texture as well as the organic matter and nitrogen content; 2) nitrogen accumulates beneath the vegetation suggesting that vegetated sediments are sinks; however, functional recycling mechanisms seem to be operating as suggested by the larger magnitude of remineralized nitrogen in the vegetated profiles; and 3) the establishment of seagrasses in this geographical region are not necessarily restricted by the sediment properties measured in this study. These data and conclusions are discussed in regard to an application of contemporary theories of ecosystem development to seagrass systems.Contribution Number 82-22-B  相似文献   

18.
R. Hüser 《Plant and Soil》1971,34(1):255-256
Summary Basally wetted sample sods ofCalamagrostis epigeios andAira caespitosa were tested for N 2 15 -fixation. Traces of N15 were only found in the samples after cutting and removal of the grass shoots followed by inversion of the sods. Using oat seedlings, the positive effect of the rhizosphere on nitrogen fixation was measured in an artificially mixed soil substrate.   相似文献   

19.
Thirteen seagrass beds located over a 80-km range in the brackish waters of SW, Finland, northern Baltic Sea were investigated in order to determine the environmental variables important for univariate community measures and for number, composition and redundancy of functional groups of benthic macrofauna. For species assemblages, fetch and shore angle were the best explanatory variables, followed by sediment granulometry (fine gravel) and then sediment organics. Similarly, fetch, shore angle and Zostera marina shoot density were the best explanatory variables for functional group patterns. Small (< 50 m2) inner-archipelago beds were functionally and structurally equal to the most extensive (500 to > 1000 m2) seagrass beds in the study area. Community measures (density, number of species and diversity) and functional diversity (number of functional groups) equalled or exceeded levels previously recorded in deeper, non-vegetated communities in the northern Baltic Sea. In comparison with marine seagrass assemblages, the total number of species and number of species per function were low. However, species density and derived diversity measures (Shannon-Wieners index H′) equalled or exceeded those reported for other seagrass ecosystems. It is concluded that in terms of seagrass infauna, the Baltic Sea should not be regarded species poor, as is often generally stated, and that conservation initiatives and management strategies should consider both minor as well as more extensive occurrences of seagrasses in coastal waters.  相似文献   

20.
Abstract The effect of increasing planting unit size and stabilizing sediment was examined for two seagrass planting methods at Carnac Island, Western Australia in 1993. The staple method (sprigs) was used to transplant Amphibolis griffithii (J. M. Black) den Hartog and the plug method was used to transplant A. griffithii and Posidonia sinuosa Cambridge and Kuo. Transplant size was varied by increasing the number of rhizomes incorporated into a staple and increasing the diameter of plugs. Planting units were transplanted into bare sand, back into the original donor seagrass bed, or into a meadow of Heterozostera tasmanica, which is an important colonizing species. Sprigs of A. griffithii were extracted from a monospecific meadow; tied into bundles of 1, 2, 5, and 10 rhizomes; and planted into unvegetated areas. Half the units were surrounded by plastic mesh and the remainder were unmeshed. All treatments were lost within 99 days after transplanting, and although larger bundles survived better than smaller ones, no significant differences could be attributed to the effects of mesh or sprig size. Plugs of P. sinuosa and A. griffithii were extracted from monospecific meadows using polyvinyl chloride pipe of three diameters, 5, 10, and 15 cm, and planted into unvegetated areas nearby. Half the units were surrounded by plastic mesh and the remainder were unmeshed. Posidonia sinuosa plugs were also placed within a meadow of H. tasmanica (Martens ex Aschers.) den Hartog. Only 60% of A. griffithii plug sizes survived 350 days after transplanting back into the donor bed; however, survival of transplants at unvegetated areas varied considerably, and analysis of variance indicated a significant two‐way interaction between treatment and plug size. Transplants survived better when meshed (90% survived) and survival improved with increasing plug size. Posidonia sinuosa transplants survived poorly (no plugs survived beyond 220 days in bare or meshed treatments) regardless of size. Survival of 10‐ and 15‐cm plugs was markedly better than the 5‐cm plugs in vegetated areas, including the H. tasmanica meadow. The use of large seagrass plugs may be appropriate for transplantation in high‐energy wave environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号