首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor for granulocyte colony-stimulating factor (G-CSF) can mediate differentiation and proliferation of hemopoietic cells. A proliferative signal is associated with activation of the ERK mitogen-activated protein kinase (MAPK) pathway. To determine whether other MAPK pathways are activated by G-CSF signalling, we have investigated activation of JNK/SAPK in cells proliferating in response to G-CSF. Here we show that G-CSF and interleukin-3 activate JNK/SAPK in two hemopoietic cell lines. The region of the G-CSF receptor required for G-CSF-induced JNK/SAPK activation is located within the C-terminal 68 amino acids of the cytoplasmic domain, which contains Tyr 763. Mutation of Tyr 763 to Phe completely blocks JNK/SAPK activation. However, the C-terminal 68 amino acids are not required for ERK2 activation. We show that activation of JNK/SAPK, like that of ERK2, is dependent on Ras but that higher levels of Ras-GTP are associated with activation of JNK/SAPK than with activation of ERK2. Two separate functional regions of the G-CSF receptor contribute to activation of Ras. The Y763F mutation reduces G-CSF-induced Ras activation from 30 to 35% Ras-GTP to 10 to 13% Ras-GTP. Low levels of Ras activation (10 to 13% Ras-GTP), which are sufficient for ERK2 activation, require only the 100 membrane-proximal amino acids. High levels of Ras-GTP provided by expression of oncogenic Ras are not sufficient to activate JNK/SAPK. An additional signal, also mediated by Tyr 763, is required for activation of JNK/SAPK.  相似文献   

2.
The mTORC1 complex (mammalian target of rapamycin (mTOR)-raptor) is modulated by mitogen-activated protein (p44/42 MAP) kinases (p44/42) through phosphorylation and inactivation of the tuberous sclerosis complex. However, a role for mTORC1 signaling in modulating activation of p44/42 has not been reported. We show that in two cancer cell lines regulation of the p44/42 MAPKs is mTORC1-dependent. In Rh1 cells rapamycin inhibited insulin-like growth factor-I (IGF-I)-stimulated phosphorylation of Thr(202) but not Tyr(204) and suppressed activation of p44/42 kinase activity. Down-regulation of raptor, which inhibits mTORC1 signaling, had a similar effect to rapamycin in blocking IGF-I-stimulated Tyr(204) phosphorylation. Rapamycin did not block maximal phosphorylation of Tyr(204) but retarded the rate of dephosphorylation of Tyr(204) following IGF-I stimulation. IGF-I stimulation of MEK1 phosphorylation (Ser(217/221)) was not inhibited by rapamycin. Higher concentrations of rapamycin (> or =100 ng/ml) were required to inhibit epidermal growth factor (EGF)-induced phosphorylation of p44/42 (Thr(202)). Rapamycin-induced inhibition of p44/42 (Thr(202)) phosphorylation by IGF-I was reversed by low concentrations of okadaic acid, suggesting involvement of protein phosphatase 2A (PP2A). Both IGF-I and EGF caused dissociation of PP2A catalytic subunit (PP2Ac) from p42. Whereas low concentrations of rapamycin (1 ng/ml) inhibited dissociation of PP2Ac after IGF-I stimulation, it required higher concentrations (> or =100 ng/ml) to block EGF-induced dissociation, consistent with the ability for rapamycin to attenuate growth factor-induced activation of p44/42. The effect of rapamycin on IGF-I or insulin activation of p44/42 was recapitulated by amino acid deprivation. Rapamycin effects altering the kinetics of p44/42 phosphorylation were completely abrogated in Rh1mTORrr cells that express a rapamycin-resistant mTOR, whereas the effects of amino acid deprivation were similar in Rh1 and Rh1mTORrr cells. These results indicate complex regulation of p44/42 by phosphatases downstream of mTORC1. This suggests a model in which mTORC1 modulates the phosphorylation of Thr(202) on p44/42 MAPKs through direct or indirect regulation of PP2Ac.  相似文献   

3.
Expression ofendothelial nitric oxide synthase (eNOS) in transfected U-937 cellsupregulates phorbol 12-myristate 13-acetate (PMA)-induced tumornecrosis factor- (TNF-) production through a superoxide(O)-dependent mechanism. Because mitogen-activatedprotein kinases (MAPK) have been shown to participate in both reactiveoxygen species signaling and TNF- regulation, their possible role ineNOS-derived O signal transduction was examined. Aredox-cycling agent, phenazine methosulfate, was found to bothupregulate TNF- (5.8 ± 1.0 fold; P = 0.01) andincrease the phosphorylation state of p42/44 MAPK (3.1 ± 0.2 fold; P = 0.01) in PMA-differentiated U-937 cells. AlthoughS-nitroso-N-acetylpenicillamine, a nitric oxide(NO) donor, also increased TNF- production, NO exposure led tophosphorylation of p38 MAPK, not p42/44 MAPK. Upregulation of TNF-production by eNOS transfection was associated with increases inactivated p42/44 MAPK (P = 0.001), whereas levels ofphosphorylated p38 MAPK were unaffected. Furthermore, cotransfectionwith Cu/Zn superoxide dismutase, which blocks TNF- upregulation byeNOS, also abolished the effects on p42/44 MAPK. Expression ofGln361eNOS, a mutant that produces O but not NO, still resulted in p42/44 MAPK phosphorylation. In contrast, twoNADPH binding site deletion mutants of eNOS that lack oxidase activityhad no effect on p42/44 MAPK. Finally, PD-98059, a p42/44 MAPK pathwayinhibitor, blocked TNF- upregulation by eNOS (P = 0.02).Thus O produced by eNOS increases TNF- productionvia a mechanism that involves p42/44 MAPK activation.

  相似文献   

4.
5.
6.
The proteasome is emerging as a target for cancer therapy because small molecule inhibitors of its catalytic activity induce apoptosis in both in vitro and in vivo models of human malignancies and are proving to have efficacy in early clinical trials. To further elucidate the mechanism of action of these inhibitors, their impact on signaling through the p44/42 mitogen-activated protein kinase (MAPK) pathway was studied. Proteasome inhibition with either carbobenzoxy-leucyl-leucyl-phenylalaninal or lactacystin led to a loss of dually phosphorylated, activated p44/42 MAPK in A1N4-myc human mammary and MDA-MB-231 breast carcinoma cells in a dose- and time-dependent fashion. This correlated with an induction of the dual specificity MAPK phosphatases (MKP)-1 and -2, and blockade of MKP induction using either actinomycin D or Ro-31-8220 significantly decreased loss of activated p44/42 MAPK. Inhibition of p44/42 MAPK signaling by use of the MAPK kinase inhibitors PD 98059 or U0126, or by use of a dominant negative MAPK construct, enhanced proteasome inhibitor-mediated apoptosis. Conversely, activation of MAPK by epidermal growth factor, or use of a mutant MAPK resistant to MKP-mediated dephosphorylation, inhibited apoptosis. These studies support a role for inactivation of signaling through the p44/42 MAPK pathway in proteasome inhibitor-mediated apoptosis.  相似文献   

7.
Prostaglandin F2alpha (PGF2alpha) significantly induced p42/p44 mitogen-activated protein (MAP) kinase activity in osteoblast-like MC3T3-E1 cells. PD98059, a selective inhibitor of MAP kinase kinase, inhibited PGF2alpha-induced interleukin-6 (IL-6) synthesis as well as PGF2alpha-induced p42/p44 MAP kinase activation. PD98059 suppressed the IL-6 synthesis induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, or NaF, an activator of heterotrimeric GTP-binding protein, as well as the p42/p44 MAP kinase activation by TPA or NaF. Calphostin C, a highly potent and specific inhibitor of PKC, inhibited the PGF2alpha-induced p42/p44 MAP kinase activity. These results strongly suggest that PKC-dependent p42/p44 MAP kinase activatioin is involved in PGF2alpha-induced IL-6 synthesis in osteoblasts.  相似文献   

8.
9.
A Yoshikawa  H Murakami    S Nagata 《The EMBO journal》1995,14(21):5288-5296
The receptor for granulocyte colony-stimulating factor (G-CSFR) is a hemopoietic growth factor receptor, which mediates proliferation and differentiation signals. The cytoplasmic region of G-CSFR carries four tyrosine residues in its C-terminal half. We constructed mutant receptors in which each tyrosine residue of G-CSFR was mutated to phenylalanine. Two mutant receptors (Tyr703 and Tyr728) neither transduced the growth-inhibitory signal nor induced the neutrophil-specific myeloperoxidase (MPO) gene. The Tyr703 mutant did not induce morphological changes in cells, whereas transformants expressing the Tyr728 mutant adhered to plates with a macrophage-like morphology upon G-CSF stimulation. Mutation of the most distal tyrosine residue (Tyr763) abolished the ability of G-CSFR to stimulate the tyrosine phosphorylation of a cellular protein with an M(r) of 54 kDa. These results indicated that the regions around the three tyrosine residues of G-CSFR play essential and distinct roles in signal transduction.  相似文献   

10.
Results presented in this study indicate that in human embryonic kidney 293 cells (HEK 293), the ghrelin receptor growth hormone secretagogue receptor type 1a (GHS-R1a) activates the extracellular signal-related kinases 1 and 2 (ERK 1/2) via three pathways. One pathway is mediated by the beta-arrestins 1 and 2, and requires entry of the receptor into a multiprotein complex with the beta-arrestins, Src, Raf-1, and ERK 1/2. A second pathway is G(q/11)-dependent and involves a Ca(2+)-dependent PKC (PKCalpha/beta) and Src. A third pathway is G(i)-dependent and involves phosphoinositide 3-kinase (PI3K), PKCepsilon, and Src. Our current study reveals that G(i/o)- and G(q/11)-proteins are crucially involved in the beta-arrestin-mediated ERK 1/2 activation. These results thus support the view that the beta-arrestins act as both scaffolding proteins and signal transducers in ERK 1/2 activation, as reported for other receptors. The different pathways of ERK 1/2 activation suggest that binding to GHS-R1a activates ERK 1/2 pools at different locations within the cell, and thus probably with different physiological consequences.  相似文献   

11.
Signal transduction induced by activated factor VII (FVIIa) was studied with baby hamster kidney (BHK) cells transfected with human tissue factor (TF). FVIIa induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) in cells expressing TF, BHK(+TF), but not in wild-type BHK(-TF) cells. BHK(+TF) cells responded to FVIIa in a dose-dependent manner, with detectable phosphorylation above 10-20 nM FVIIa. BHK cells transfected with a cytoplasmic domain-deleted version of TF, (des248-263)TF, or a C245S substitution variant of TF also supported FVIIa-induced MAPK activation. Experiments with active site-inhibited FVIIa, thrombin, factor Xa, and hirudin confirmed that the catalytic activity of FVIIa was mandatory for p44/42 MAPK activation. Furthermore, a high concentration of FVIIa in complex with soluble TF induced p44/42 MAPK phosphorylation in BHK(-TF) cells. These data suggest that TF was not directly involved in FVIIa-induced p44/42 MAPK phosphorylation but rather served to localize the action of FVIIa to the cell surface, potentially to cleave a cell surface receptor. Desensitization experiments with sequential addition of proteases suggested that the p44/42 MAPK response induced by FVIIa was distinctly different from the thrombin response, possibly involving a novel member of the protease-activated receptor family.  相似文献   

12.
13.
14.
Proteolysis by the ubiquitin/proteasome pathway regulates the intracellular level of several proteins, some of which control cell proliferation and cell cycle progression. To determine what kinds of signaling cascades are activated or inhibited by proteasome inhibition, we treated PC12 cells with specific proteasome inhibitors and subsequently performed in-gel kinase assays. N-Acetyl-Leu-Leu-norleucinal and lactacystin, which inhibit the activity of the proteasome, induced the activation of p42/p44 mitogen-activated protein (MAP) kinases [extracellular signal-regulated kinases (ERKs) 1 and 2]. In contrast, N-acetyl-Leu-Leu-methional, which inhibits the activity of calpains, but not of the proteasome, failed to induce ERK activation. Uniquely, the kinetics of MAP kinase activation induced by proteasome inhibitors are very slow compared with those resulting from activation by nerve growth factor; ERK activation is detectable only after a 5-h treatment with the inhibitors, and its activity remained unchanged for at least until 27 h. Proteasome inhibitor-initiated ERK activation is inhibited by pretreatment with the ERK kinase inhibitor PD 98059, as well as by overexpression of a dominant-negative form of Ras. Thus, proteasome inhibitors induce sustained ERK activation in a Ras-dependent manner. Proteasome inhibitor-induced neurite outgrowth, however, is not inhibited by PD 98059, indicating that sustained activation of ERKs is not the factor responsible for proteasome inhibitor-induced morphological differentiation. Our data suggest the presence of a novel mechanism for activation of the MAP kinase cascade that involves proteasome activity.  相似文献   

15.
16.
Conway A  Pyne NJ  Pyne S 《Cellular signalling》2000,12(11-12):737-743
Previous studies have demonstrated that a number of biochemical actions of ceramide are mediated through protein kinase signalling pathways, such as p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) and c-Jun N-terminal directed protein kinase (JNK). Ceramide-activated protein kinases, such as the kinase suppressor of Ras (KSR) and protein kinase Czeta (PKCzeta), are involved in the regulation of c-Raf, which promotes sequential activation of MEK-1 and p42/p44 MAPK in mammalian cells. However, in cultured airway smooth muscle (ASM) cells, neither KSR nor PKCzeta are involved in the C2-ceramide (C2-Cer)-dependent activation of this kinase cascade. Instead, we found that C2-Cer utilises a novel pathway involving tyrosine kinases, phosphoinositide 3-kinase (PI3K) and conventional PKC isoform(s). We also found that despite its ability to stimulate p42/p44 MAPK, C2-Cer inhibited platelet-derived growth factor (PDGF)-stimulated DNA synthesis. The possibility that growth arrest could be mediated by JNK was discounted on the basis that PDGF, as well as ceramide, stimulated JNK in these cells. Therefore, growth arrest in response to ceramide is mediated by an alternative mechanism.  相似文献   

17.
Prostaglandins (PGs) have been implicated in lowering intraocular pressure (IOP). A possible role of cyclooxygenase-2 (COX-2) in this process was emphasized by findings showing impaired COX-2 expression in the non-pigmented ciliary epithelium (NPE) of patients with primary open-angle glaucoma. The present study investigates the effect of the major COX-2 product, PGE(2), on the expression of its synthesizing enzyme in human NPE cells (ODM-2). PGE(2) led to an increase of COX-2 mRNA and protein expression, whereas the expression of COX-1 remained unchanged. Upregulation of COX-2 expression by PGE(2) was accompanied by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, and was abrogated by inhibitors of both pathways. Moreover, PGE(2)-induced COX-2 expression was suppressed by the intracellular calcium chelator, BAPTA/AM, and the protein kinase C inhibitor bisindolylmaleimide II, whereas the protein kinase A inhibitor H-89 was inactive in this respect. Induction of COX-2 expression was also elicited by butaprost (EP(2) receptor agonist) and 11-deoxy PGE(1) (EP(2)/EP(4) receptor agonist), but not by EP(1)/EP(3) receptor agonists (17-phenyl-omega-trinor PGE(2), sulprostone). Consistent with these findings, the EP(1)/EP(2) receptor antagonist, AH-6809, and the selective EP(4) receptor antagonist, ONO-AE3-208, significantly reduced PGE(2)-induced COX-2 expression. Collectively, our results demonstrate that PGE(2) at physiologically relevant concentrations induces COX-2 expression in human NPE cells via activation of EP(2)- and EP(4) receptors and phosphorylation of p38 and p42/44 MAPKs. Positive feedback regulation of COX-2 may contribute to the production of outflow-facilitating PGs and consequently to regulation of IOP.  相似文献   

18.
It has been shown that thyroid hormone stimulates the activity of alkaline phosphatase, a marker of mature osteoblast phenotype, in osteoblasts. In the present study, we investigated whether p44/p42 mitogen-activated protein (MAP) kinase is involved in the thyroid hormone-stimulated alkaline phosphatase activity in osteoblast-like MC3T3-E1 cells. Triiodothyronine (T(3)) markedly induced the phosphorylation of p44/p42 MAP kinase. PD98059 and U0126, inhibitors of the upstream kinase that activates p44/p42 MAP kinase, significantly enhanced the T(3)-induced alkaline phosphatase activity in a dose-dependent manner. The phosphorylation of p44/p42 MAP kinase induced by T(3) was reduced by U0126. These results strongly suggest that p44/p42 MAP kinase takes part in the thyroid hormone-stimulated alkaline phosphatase activity in osteoblasts and that p44/p42 MAP kinase plays an inhibitory role in the thyroid hormone-effect.  相似文献   

19.
The fungus Spilocaea oleagina causes peacock leaf spot in olive. Virtually nothing is known about S. oleagina despite the loss of crop yield caused by this fungus. In order to get insight, an in vitro culture of the fungus has been established and its identity confirmed by amplified fragment length polymorphism analysis. Using this in vitro culture, we have cloned and analysed the DNA sequences of the 18S and 28S ribosomal RNA genes (rDNA) as well as the internal transcribed spacers (ITS) and 5.8S rDNA region of S. oleagina. Sequence analysis and comparison to other fungi determined that this fungus belongs to the Dothideomycetes class. We have also determined that S. oleagina is an anamorphic phase of a yet unidentified Venturia species based on phylogenetic analysis using the 28S rDNA and ITS sequences.  相似文献   

20.
We previously reported that fibroblast growth factor-2 (FGF-2) acts not only on osteoblasts to stimulate osteoclastic bone resorption indirectly but also on mature osteoclasts directly. In this study, we investigated the mechanism of this direct action of FGF-2 on mature osteoclasts using mouse and rabbit osteoclast culture systems. FGF-2 stimulated pit formation resorbed by isolated rabbit osteoclasts moderately from low concentrations (>/=10(-12) m), whereas at high concentrations (>/=10(-9) m) it showed stimulation on pit formation resorbed by unfractionated bone cells very potently. FGF-2 (>/=10(-12) m) also increased cathepsin K and MMP-9 mRNA levels in mouse and rabbit osteoclasts. Among FGF receptors (FGFR1 to 4) only FGFR1 was detected on isolated mouse osteoclasts, whereas all FGFRs were identified on mouse osteoblasts. FGF-2 (>/=10(-12) m) up-regulated the phosphorylation of cellular proteins, including p42/p44 mitogen-activated protein (MAP) kinase, and increased the kinase activity of immunoprecipitated FGFR1 in mouse osteoclasts. The stimulation of FGF-2 on mouse and rabbit osteoclast functions was abrogated by PD-98059, a specific inhibitor of p42/p44 MAP kinase. These results strongly suggest that FGF-2 acts directly on mature osteoclasts through activation of FGFR1 and p42/p44 MAP kinase, causing the stimulation of bone resorption at physiological or pathological concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号