首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

2.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

3.
Purified fructose-1,6-bisphosphatase from Saccharomyces cerevisiae was phosphorylated in vitro by purified yeast cAMP-dependent protein kinase. Maximal phosphorylation was accompanied by an inactivation of the enzyme by about 60%. In vitro phosphorylation caused changes in the kinetic properties of fructose-1,6-bisphosphatase: 1) the ratio R(Mg2+/Mn2+) of the enzyme activities measured at 10 mM Mg2+ and 2 mM Mn2+, respectively, decreased from 2.6 to 1.2; 2) the ratio R(pH 7/9) of the activities measured at pH 7.0 and pH 9.0, respectively, decreased from 0.62 to 0.38, indicating a shift of the pH optimum to the alkaline range. However, the affinity of the enzyme for its inhibitors fructose-2,6-bisphosphate (Fru-2,6-P2) and AMP, expressed as the concentration required for 50% inhibition, was not changed. The maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase was 0.6-0.75 mol/mol of the 40-kDa subunit. Serine was identified as the phosphate-labeled amino acid. The initial rate of in vitro phosphorylation of fructose-1,6-bisphosphatase, obtained with a maximally cAMP-activated protein kinase, increased when Fru-2,6-P2 and AMP, both potent inhibitors of the enzyme, were added. As Fru-2,6-P2 and AMP did not affect the phosphorylation of histone by cAMP-dependent protein kinase, the inhibitors must bind to fructose-1,6-bisphosphatase in such a way that the enzyme becomes a better substrate for phosphorylation. Nevertheless, Fru-2,6-P2 and AMP did not increase the maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase beyond that observed in the presence of cAMP alone.  相似文献   

4.
K Ashizawa  P McPhie  K H Lin  S Y Cheng 《Biochemistry》1991,30(29):7105-7111
We have recently shown that the cytosolic thyroid hormone binding protein (p58-M2) in human epidermoid carcinoma A431 cells is a monomer of pyruvate kinase, subtype M2 (PKM2). To characterize further the molecular properties of p58-M2, we overexpressed p58-M2 in Escherichia coli and purified it to homogeneity. At 22 degrees C, the monomeric p58-M2, exhibited kinase activity with an apparent Vmax of 22 +/- 9 units/mg. The Km for adenosine diphosphate (ADP) and phosphoenolpyruvate (PEP) are 3.85 +/- 2.4 and 1.55 +/- 0.73 mM, respectively. Upon activation by fructose 1,6-bisphosphate (Fru-1,6-P2), Vmax and Km for ADP and PEP were changed to 490 +/- 27 units/mg and 0.63 +/- 0.09 and 0.13 +/- 0.01 mM, respectively. These results indicated that p58-M2 has intrinsic kinase activity. Analysis of the molecular size indicated that the activation of p58-M2, by Fru-1,6-P2 resulted in the association of the monomeric p58-M2 to the tetrameric PKM2. p58-M2 bound to 3,3',5-triiodo-L-thyronine (T3) (Ka = 1.7 x 10(7) M-1) and exhibited analogue specificity, whereas PKM2 did not bind thyroid hormone. The order of binding affinity was L-T3 greater than L-thyroxine greater than 3,3',5-triiodothyropropionic acid greater than 3'-isopropyl-3,5-triiodo-L-thyronine greater than 3'5',3-triiodo-L-thyronine. Binding of T3 and its analogues resulted in the inhibition of the kinase activity of p58-M2. The order of kinase inhibitory activity and preventing its association to tetrameric PKM2 was parallel to that of binding activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The occurrence of specific fructose-1,6-bisphosphatase [D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11] (Fru-1,6-P2ase) in the small intestine was confirmed. 1. Fru-1,6-P2ase was isolated from mouse small intestine by a simple method. The isolated enzyme preparation was an electrophoretically homogeneous protein. 2. The molecular weight and subunit molecular weight were 140,000 and 38,000, respectively. 3. The intestinal enzyme was electrophoretically distinct from the liver enzyme. 4. The kinetic properties of the purified intestinal enzyme were compared with those of the mouse liver and muscle enzymes. 5. Mouse intestinal and muscle Fru-1,6-P2ases hydrolyzed ribulose-1,5-bisphosphate in addition to fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate.  相似文献   

6.
The activity of pyruvate kinase, subtype M2 (PKM2), is known to be increased by fructose 1,6-bisphosphate (Fru-1,6-P2), one of the metabolites in the glycolytic pathway. Recently, we have shown that in vitro, Fru-1,6-P2 activated the association of monomer to form the tetrameric PKM2. To ascertain whether this mode of regulation also occurs in vivo, we prepared monomer-specific monoclonal antibody and quantified the monomer formation in situ in cultured cells by immunocytochemistry. The intracellular Fru-1,6-P2 was manipulated by the glucose concentration in the media. At the physiological concentration of glucose (4-6 mM), 30-35% of PK existed as a monomer. However, PKM2 was dissociated into monomer within minutes after cells were deprived of glucose. The maximal level of monomer was detected after 1 h at 37 degrees C. Monomer was rapidly (within minutes) converted to tetramer after addition of glucose. Furthermore, when cells cultured in 10 mM of glucose were treated with cytochalasin B, an inhibitor of the glucose transporter, a maximal level of monomer was detected within 20-30 min. Determination of Fru-1,6-P2 indicated that its intracellular concentration decreased concomitantly with the reduction in glucose concentration in the medium. These results indicate that monomer-tetramer inter-conversion is a major in vivo cellular regulatory mechanism in response to changes in the extracellular glucose concentration via Fru-1,6-P2.  相似文献   

7.
Some kinetic properties of pyruvate kinase from rat small intestine have been investigated. The relative insensitivity of the enzyme to ATP inhibition and the amino acid inhibition pattern allows the conclusion that intestinal pyruvate kinase belongs to the M2-type. The pyruvate kinase activity as a function of the phosphoenol pyruvate concentration is characterized by two different n values. The activity correlating with the low n value is stimulated by Fru-1,6-P2, whereas the activity at higher phosphoenol pyruvate concentrations is not influenced by this glycolytic intermediate. These results, together with the partial relief of the amino acid inhibition by Fru-1,6-P2, show that two forms of the enzyme are present with different kinetic properties. The metabolic implication of the kinetic properties of pyruvate kinase for rat small intestine is discussed.  相似文献   

8.
An open reading frame (ORF) of snake muscle fructose-1,6-bisphosphatase (Fru-1,6-P2ase) was obtained by the RT-PCR method with degenerate primers, followed by RACE-PCR. The cDNA of Fru-1,6-P2ase, encoding 340 amino acids, is highly homologous to that of mammalian species, especially human muscle, with a few exceptions. Kinetic parameters of the purified recombinant enzyme, including inhibition behavior by AMP, were identical to that of the tissue form. Replacement of the N-terminal sequence of this enzyme by the corresponding region of rat liver Fru-1,6-P2ase shows that the activity was fully retained in the chimeric enzyme. The inhibition constant (Ki) of AMP at pH 7.5, however, increases sharply from 0.85 microM (wild-type) to 1.2 mM (chimeric enzyme). AMP binding is mainly located in the N-terminal region, and the allosteric inhibition was shown not to be merely determined by the backbone of this region. The fact that the chimeric enzyme could be activated at alkaline pH by AMP indicated that the AMP activation requires the global structure beyond the area.  相似文献   

9.
A stable, homogeneous preparation of pyruvate kinase from white muscle of the American eel, Anguilla rostrata with a specific activity of 350 units/mg has been obtained. The enzyme has a pH optimum in the range 6.3-6.5 and requires Mg2+ and K+ for maximum activity. Eel muscle pyruvate kinase exhibits slight co-operativity in the binding of the substrate phosphoenol-pyruvate. It is activated by fructose-1,6-bisphosphate in a pH dependent manner and is inhibited by both alanine and phenylalanine. These properties are very similar to the properties of the mammalian M2 isozyme.  相似文献   

10.
Complementary DNA sequence of anaerobically induced cytoplasmic maize aldolase was expressed under control of the tac promoter sequence in Escherichia coli using the pKK223-3 plasmid as a vehicle. Levels of recombinant protein expressed exceeded 20 mg of soluble aldolase per liter of culture. The purified recombinant enzyme displayed the expected molecular weight and tetrameric subunit assembly on the basis of mobilities on denaturing electrophoretic gels and gel filtration, respectively. Sequencing of the NH2 terminus and amino acid composition analysis of the recombinant protein including COOH-terminal peptides agreed with the cDNA sequence. Partial kinetic characterization based on product inhibition studies was consistent with the ordered uni-bi reaction mechanism expected of aldolases. Turnover with respect to substrates Fru-1,6-P2 and Fru-1-P by the recombinant enzyme is the highest reported to date for class I aldolases. Fru-1,6-P2 cleavage rate by recombinant cytoplasmic maize enzyme is three times greater than that of the chloroplast enzyme. Fru-1-P cleavage is 8-fold greater than that of the rabbit liver isozyme and 20-fold greater than that of the rabbit muscle isozyme to which maize aldolase exhibits the greatest homology. The implications of such a high Fru-1-P turnover on carbohydrate utilization under anaerobiosis is discussed.  相似文献   

11.
An investigation was performed to elucidate some unusual phenomena which had been observed with phosphoenolpyruvate (PEP) carboxylase [EC 4.1.1.31] of Escherichia coli. (i) Fructose 1,6-bisphosphate (Fru-1,6-P2) and GTP--the allosteric activators--were competitive with each other in the activation. (ii) Some analogs of PEP such as DL-2-phospholactate and 2-phosphoglycolate, which behaved as inhibitors in the presence of the activator (acetyl-CoA or dioxane), activated the enzyme to some extent in the absence of the activator. (iii) Ammonium sulfate deprived the enzyme of sensitivity to Fru-1,6-P2 or GTP but had no effect on the sensitivity to other effectors. It was found that the activation by the analogs was lost upon desensitization of the enzyme to Fru-1,6-P2 by reaction with 2,4,6-trinitrobenzene sulfonate. The activation by the analogs was not observed in the presence of 200 mM ammonium sulfate. In the presence of lower concentrations (0.1 mM) of PEP, ammonium sulfate activated the enzyme at concentrations less than 700 mM but had an inhibitory effect on the desensitized enzyme. These findings suggest that the unusual phenomena described above are a result of binding of the phosphate esters and sulfate ions with the Fru-1,6-P2 site of the enzyme or the active site depending on the reaction conditions.  相似文献   

12.
In the absence of AMP and Fru-2,6-P2, several amino-acids such as histidine, lysine, alanine, aspartic acid, and other molecules, as reduced glutathione or citrate, activate FBPase-1 from Mytilus galloprovincialis mantle. AMP decreases Vmax and Km for Fru-1,6-P2 both in the absence and in the presence of activators; but the addition of Fru-2,6-P2 decreases the affinity of the enzyme by its substrate. Na+ acts as a inhibitor reducing both Vmax and Km. The Km value is lower than the physiological level of Fru-1,6-P2, suggesting that the enzyme is operative but its activity is very reduced.  相似文献   

13.
Isolated rat hepatocytes convert 2,5-anhydromannitol to 2,5-anhydromannitol-1-P and 2,5-anhydromannitol-1,6-P2. Cellular concentrations of the monophosphate and bisphosphate are proportional to the concentration of 2,5-anhydromannitol and are decreased by gluconeogenic substrates but not by glucose. Rat liver phosphofructokinase-1 phosphorylates 2,5-anhydromannitol-1-P; the rate is less than that for fructose-6-P but is stimulated by fructose-2,6-P2. At 1 mM fructose-6-P, bisphosphate compounds activate rat liver phosphofructokinase-1 in the following order of effectiveness: fructose-2,6-P2 much greater than 2,5-anhydromannitol-1,6-P2 greater than fructose-1,6-P2 greater than 2,5-anhydroglucitol-1,6-P2. High concentrations of fructose-1,6-P2 or 2,5-anhydromannitol-1,6-P2 inhibit phosphofructokinase-1. Rat liver fructose 1,6-bisphosphatase is inhibited competitively by 2,5-anhydromannitol-1,6-P2 and noncompetitively by 2,5-anhydroglucitol-1,6-P2. The AMP inhibition of fructose 1,6-bisphosphatase is potentiated by 2,5-anhydroglucitol-1,6-P2 but not by 2,5-anhydromannitol-1,6-P2. Rat liver pyruvate kinase is stimulated by micromolar concentrations of 2,5-anhydromannitol-1,6-P2; the maximal activation is the same as for fructose-1,6-P2. 2,5-Anhydroglucitol-1,6-P2 is a weak activator. 2,5-Anhydromannitol-1-P stimulates pyruvate kinase more effectively than fructose-1-P. Effects of glucagon on pyruvate kinase are not altered by prior treatment of hepatocytes with 2,5-anhydromannitol. Pyruvate kinase from glucagon-treated hepatocytes has the same activity as the control pyruvate kinase at saturating concentrations of 2,5-anhydromannitol-1,6-P2 but has a decreased affinity for 2,5-anhydromannitol-1,6-P2 and is not stimulated by 2,5-anhydromannitol-1-P. The inhibition of gluconeogenesis and enhancement of glycolysis from gluconeogenic precursors in hepatocytes treated with 2,5-anhydromannitol can be explained by an inhibition of fructose 1,6-bisphosphatase, an activation of pyruvate kinase, and an abolition of the influence of phosphorylation on pyruvate kinase.  相似文献   

14.
Van Praag E  Tzur A  Zehavi U  Goren R 《IUBMB life》2000,49(2):149-152
Shamouti phosphofructokinase (PFP) activation depends on the presence of fructose 2,6-bisphosphate (Fru-2,6-P2) in the glycolytic reaction. The effect of activation by Fru-2,6-P2 differs considerably, however, according to the buffer (pH 8.0) in which the reaction is performed: Ka = 2.77 +/- 0.3 nM in Hepes-NaOH and 7.75 +/- 1.49 nM in Tris-HCl. The presence of chloride ions (39 mM) in the Tris-HCl buffer inhibits PFP. Indeed, when using a Hepes-NaOH buffer and then adding 39 mM NaCl, Ka = 8.12 +/- 0.52 nM. The Ki for chloride ions is approximately 21.7 mM. In the gluconeogenic reaction, Shamouti PFP generally showed a high endogenous activity. Addition of Fru-2,6-P2 did not modify the velocity and the Vmax of the enzyme; however, its presence increased the affinity of the enzyme for Fru-1,6-P2 from 200 +/- 15.6 microM in absence of Fru-2,6-P2 to 89 +/- 10.3 microM in its presence (10 microM). In the presence of chloride (39 mM), the affinity for the substrate decreased with K(m) = 150 +/- 14 microM. The calculated Ki for chloride ions equals 56.9 mM. In both the glycolytic and the gluconeogenic reactions, Vmax is not affected; therefore, the inhibition mode of chloride is competitive.  相似文献   

15.
We have isolated and sequenced two overlapping cDNA fragments which could encode the complete amino acid sequence of rat testis fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. Northern blot analysis revealed that the major 2-kilobase mRNA isolated from rat testis hybridized with a cDNA fragment. A full length cDNA, which encoded a protein of 468 amino acids, was constructed and expressed in Escherichia coli. The expressed protein, purified to homogeneity, showed a Mr of 55,000 by gel electrophoresis under denaturing conditions, compared to the deduced Mr of 54,023. Fru-6-P,2-kinase:Fru-2,6-bisphosphatase with the same Mr 55,000 was also present in rat testis extract. The active enzyme was a dimer as judged by molecular sieve filtration. The expressed enzyme was bifunctional with specific activities of 90 and 22 milliunits/mg of the kinase and the phosphatase activities, respectively. Various kinetic constants of the expressed fructose 6-P,2-kinase were KmFru 6-P = 85 microM and KmATP = 270 microM, and those of fructose 2,6-bisphosphatase were KmFru 2,6-P2 = 21 microM and KiFru 6-P = 3.4 microM. The enzyme was phosphorylated by Fru-2,6[2-32P]P2 and also by protein kinase C, but not by cAMP-dependent protein kinase, which is in contrast to the liver and heart isozymes.  相似文献   

16.
Phosphoenolpyruvate (PEP) carboxylase [EC 4.1.1.31] of E. coli was inactivated by 2,4,6-trinitrobenzene sulfonate (TNBS), a reagent known to attack amino groups in polypeptides. When the modified enzyme was hydrolyzed with acid, epsilon-trinitrophenyl lysine (TNP-lysine) was identified as a product. Close similarity of the absorption spectrum of the modified enzyme to that of TNP-alpha-acetyl lysine and other observations indicated that most of the amino acid residues modified were lysyl residues. Spectrophotometric determination suggested that five lysyl residues out of 37 residues per subunit were modified concomitant with the complete inactivation of the enzyme. DL-Phospholactate (P-lactate), a potent competitive inhibitor of the enzyme, protected the enzyme from TNBS inactivation. The concentration of P-lactate required for half-maximal protection was 3 mM in the presence of Mg2+ and acetyl-CoA (CoASAc), which is one of the allosteric activators of the enzyme. About 1.3 lysyl residues per subunit were protected from modification by 10 mM P-lactate, indicating that one or two lysyl residues are essential for the catalytic activity and are located at or near the active site. The Km values of the partially inactivated enzyme for PEP and Mg2+ were essentially unchanged, though Vmax was decreased. The partially inactivated enzyme showed no sensitivity to the allosteric activators, i.e., fructose 1,6-bisphosphate (Fru-1,6-P2) and GTP, or to the allosteric inhibitor, i.e., L-aspartate (or L-malate), but retained sensitivities to other activators, i.e., CoASAc and long-chain fatty acids. P-lactate, in the presence of Mg2+ and CoASAc, protected the enzyme from inactivation, but did not protect it from desensitization to Fru-1,6-P2, GTP, and L-aspartate. However, when the modification was carried out in the presence of L-malate, the enzyme was protected from desensitization to L-aspartate (or L-malate), but was not protected from desensitization to Fru-1,6-P2 and GTP. These results indicate that the lysyl residues involved in the catalytic and regulatory functions are different from each other, and that lysyl residues involved in the regulation by L-aspartate (or L-malate) are also different from those involved in the regulation by Fru-1,6-P2 and GTP.  相似文献   

17.
1. Oral administration of ethanol (3 ml) of 95% in 12 ml total volume over a two day period) significantly decrease plasma glucose and insulin levels and the activities of two key gluconeogenic enzymes, pyruvate carboxylase (pyruvate: CO2 ligase (ADP), EC 6.4.1.1) and fructose diphosphatase, (D-Fru-1,6-P2 1-phosphohydrolase, EC 3.1.3.11), and one glycolytic enzyme, fructose-1,6-P2 aldolase (Fru-1,6-P2 D-glyceraldehyde-3-P lyase, EC 4.1.2.13). In each instance, the administration of 2400 mug daily of oral folate in conjuction with the ethanol prevented these alterations in carbohydrate metabolism. 2. Intravenous injection of ethanol produced a rapid decrease (within 10--15 min) in the activities of hepatic phosphofructokinase, (ATP:D-fructose-6-phosphate 6-phosphotransferase, EC 2.7.1.11), pyruvate kinase, (ATP:pyruvate phosphotransferase, EC 2.7.1.40), fructose diphosphatase and fructose-1,6-P2 aldolase. 3. Intravenous ethanol significantly increased hepatic cyclic AMP concentration approximately 60% within 10 min, while oral ethanol did not alter hepatic cyclic AMP concentrations. 4. These data confirm the known antagonism ethanol and folate and suggest that oral folate might offer a protective effect against hypoglycemia in rats receiving ethanol.  相似文献   

18.
The influence that fructose 2,6-bisphosphate (Fru-2,6-BP) has on the aggregation properties of rat liver phosphofructokinase has been studied by observing the fluorescence polarization of the enzyme covalently bound to the fluorescent probe pyrenebutyric acid. Fru-2,6-BP dramatically slows the dissociation of the high molecular weight aggregate forms of the enzyme when the enzyme is diluted to 3.2 micrograms/ml (4 X 10(-8) M subunits). Furthermore, Fru-2,6-BP is a strong promoter of reassociation to tetramer and larger forms if the enzyme has been previously allowed to dissociate to the dimer in its absence. Unlike many other positive effectors of liver phosphofructokinase, Fru-2,6-BP is also able to overcome the tendency of MgATP to promote tetramer formation and instead stabilize a very high degree of high molecular weight aggregate formation even in the presence of MgATP. The apparent affinity of liver phosphofructokinase for Fru-2,6-BP was measured by its ability to promote reassociation and compared to that for Fru-1,6-BP. The apparent dissociation constant for Fru-2,6-BP under these conditions is 36 microM, about 40-fold lower than the value of 1.4 mM measured for Fru-1,6-BP. Both ligands demonstrate synergism with the substrate Fru-6-P, which can lower the dissociation constant for Fru-2,6-BP 9-fold to 4 microM and that for Fru-1,6-BP 5-fold to 0.28 mM. These data are interpreted to suggest that influencing the aggregation state of rat liver phosphofructokinase may be one way in which Fru-2,6-BP achieves its effects on the enzyme in vivo.  相似文献   

19.
The nonglycolytic, anaerobic organism Veillonella parvula M4 has been shown to contain an active pyruvate kinase. The enzyme was purified 126-fold and was shown by disc-gel electrophoresis to contain only two faint contaminating bands. The purified enzyme had a pH optimum of 7.0 in the forward direction and exhibited sigmoidal kinetics at varying concentrations o-f phosphoenol pyruvate (PEP), adenosine 5'-monophosphate (AMP), and Mg-2+ ions with S0.5 values of 1.5, 2.0, and 2.4 mM, respectively. Substrate inhibition was observed above 4 m PEP. Hill plots gave slope values (n) of 4.4 (PEP), 2.8 (adenosine 5'-diphosphate), and 2.0 (Mg-2+), indicating a high degree of cooperativity. The enzyme was inhibited non-competitively by adenosine 5'-triphosphate (Ki = 3.4 mM), and this inhibition was only slightly affected by increasing concentration of Mg-2+ ions to 30 mM. Competitive inhibition was observed with 3-phosphoglycerate, malate, and 2,3-diphosphoglycerate but only at higher inhibitor concentrations. The enzyme was activated by glucose-6-phosphate (P), fructose-6-P, fructose-1,6-diphosphate (P2), dihydroxyacetone-P, and AMP; the Hill coefficients were 2.2, 1.8, 1.5, 2.1, and 2.0, respectively. The presence of each these metabolites caused substrate velocity curves to change from sigmoidal to hyperbolic curves, and each was accompanied by an increase in the maximum activity, e.g., AMP greater than fructose-1,6-P2 greater than dihydroxyacetone-P greater than glucose-6-P greater than fructose-6-P. The activation constants for fructose-1,6-P2, AMP, and glucose-6-P were 0.3, 1.1, and 5.3 mM, respectively. The effect of 5 mM fructose-1,6-P2 was significantly different from the other compounds in that this metabolite was inhibitory between 1.2 and 3 mM PEP. Above this concentration, fructose-1,6-P2 activated the enzyme and abolished substrate inhibition by PEP. The enzyme was not affected by glucose, glyceraldehyde-3-P, 2-phosphoglycerate, lactate, malate, fumerate, succinate, and cyclic AMP. The results suggest that the pyruvate kinase from V. parvula M4 plays a central role in the control of gluconeogenesis in this organism by regulating the concentration of PEP.  相似文献   

20.
1. The proton-transfer reactions of yeast pyruvate kinase (EC 2.7.1.40) were studied. Proton-transfer from C-3 of phosphoenolpyruvate to water occurs only in the presence of the phosphoryl-acceptor ADP. Proton transfer from C-3 of pyruvate to water occurs only in the presence of ATP. However, the proton transfer in the latter case occurs 10-100 times faster than phosphoryl transfer; this supports a mechanism in which proton transfer precedes phosphoryl transfer in the reverse reaction of pyruvate kinase. 2. The characteristics of proton-transfer reactions of yeast pyruvate kinase were compared with those previously reported for rabbit muscle pyruvate kinase (Robinson, JL. and Rose, I.A. (1972) J. Biol. Chem. 247, 1096-1105). The pH-profiles and the divalent cation dependencies were similar for Fru-1,6-P2-activated yeast pyruvate kinase and the muscle enzyme. Pyruvate enolization by yeast pyruvate kinase has an absolute requirement for ATP in contrast to enolization by the muscle enzyme which proceeds when ATP is replaced by Pi or other dianions. 3. Fructose-1,6-bisphosphate was shown to affect the catelytic steps of yeast pyruvate kinase in addition to the binding of substrates. Its role depends on the divalent cation used to activate the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号