首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Ultraviolet-induced DNA damage poses a lethal block to replication. To understand the structural basis for this, we determined crystal structures of a replicative DNA polymerase from bacteriophage T7 in complex with nucleotide substrates and a DNA template containing a cis-syn cyclobutane pyrimidine dimer (CPD). When the 3' thymine is the templating base, the CPD is rotated out of the polymerase active site and the fingers subdomain adopts an open orientation. When the 5' thymine is the templating base, the CPD lies within the polymerase active site where it base-pairs with the incoming nucleotide and the 3' base of the primer, while the fingers are in a closed conformation. These structures reveal the basis for the strong block of DNA replication that is caused by this photolesion.  相似文献   

6.
Dpo4 from S. Solfataricus, a DinB-like Y family polymerase, efficiently replicates DNA past an abasic lesion. We have determined crystal structures of Dpo4 complexed with five different abasic site-containing DNA substrates and find that translesion synthesis is template directed with the abasic site looped out and the incoming nucleotide is opposite the base 5' to the lesion. The ensuing DNA synthesis generates a -1 frameshift when the abasic site remains extrahelical. Template realignment during primer extension is also observed, resulting in base substitutions or even +1 frameshifts. In the case of a +1 frameshift, the extra nucleotide is accommodated in the solvent-exposed minor groove. In addition, the structure of an unproductive Dpo4 ternary complex suggests that the flexible little finger domain facilitates DNA orientation and translocation during translesion synthesis.  相似文献   

7.
Visualizing polynucleotide polymerase machines at work   总被引:6,自引:0,他引:6  
Steitz TA 《The EMBO journal》2006,25(15):3458-3468
  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
DNA polymerases in family B are workhorses of DNA replication that carry out the bulk of the job at a high speed with high accuracy. A polymerase in this family relies on a built-in exonuclease for proofreading. It has not been observed at the atomic resolution how the polymerase advances one nucleotide space on the DNA template strand after a correct nucleotide is incorporated, that is, a process known as translocation. It is even more puzzling how translocation is avoided after the primer strand is excised by the exonuclease and returned back to the polymerase active site once an error occurs. The structural events along the bifurcate pathways of translocation and proofreading have been unwittingly captured by hundreds of structures in Protein Data Bank. This study analyzes all available structures of a representative member in family B and reveals the orchestrated event sequence during translocation and proofreading.  相似文献   

18.
19.
20.
The replication of the genome requires the removal of RNA primers from the Okazaki fragments and their replacement by DNA. In prokaryotes, this process is completed by DNA polymerase I by means of strand displacement DNA synthesis and 5 '-nuclease activity. Here, we demonstrate that the strand displacement DNA synthesis is facilitated by the collective participation of Ser(769), Phe(771), and Arg(841) present in the fingers subdomain of DNA polymerase I. The steady and presteady state kinetic analysis of the properties of appropriate mutant enzymes suggest that: (a) Ser(769) and Phe(771) together are involved in the strand separation via the formation of a flap structure, and (b) Arg(841) interacts with the template strand to achieve the optimal strand separation and DNA synthesis. The amino acid residues Ser(769) and Phe(771) are constituents of the O1-helix, which together with O and O2 helices form a 3-helix bundle structure. We note that this 3-helix bundle motif also exists in prokaryotic RNA polymerase. Thus in both DNA and RNA polymerases, this motif may have been adopted to achieve the strand separation function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号