首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present keratin expression data that lend strong support to a model of corneal epithelial maturation in which the stem cells are located in the limbus, the transitional zone between cornea and conjunctiva. Using a new monoclonal antibody, AE5, which is highly specific for a 64,000-mol-wt corneal keratin, designated RK3, we demonstrate that this keratin is localized in all cell layers of rabbit corneal epithelium, but only in the suprabasal layers of the limbal epithelium. Analysis of cultured corneal keratinocytes showed that they express sequentially three major keratin pairs. Early cultures consisting of a monolayer of "basal" cells express mainly the 50/58K keratins, exponentially growing cells synthesize additional 48/56K keratins, and postconfluent, heavily stratified cultures begin to express the 55/64K corneal keratins. Cell separation experiments showed that basal cells isolated from postconfluent cultures contain predominantly the 50/58K pair, whereas suprabasal cells contain additional 55/64K and 48/56K pairs. Basal cells of the older, postconfluent cultures, however, can become AE5 positive, indicating that suprabasal location is not a prerequisite for the expression of the 64K keratin. Taken together, these results suggest that the acidic 55K and basic 64K keratins represent markers for an advanced stage of corneal epithelial differentiation. The fact that epithelial basal cells of central cornea but not those of the limbus possess the 64K keratin therefore indicates that corneal basal cells are in a more differentiated state than limbal basal cells. These findings, coupled with the known centripetal migration of corneal epithelial cells, strongly suggest that corneal epithelial stem cells are located in the limbus, and that corneal basal cells correspond to "transient amplifying cells" in the scheme of "stem cells----transient amplifying cells----terminally differentiated cells."  相似文献   

2.
Newt and rat cornea with and without the corneal limbus was cultured under conditions of adhesion to a substrate (stationary culturing) and in the absence of adhesion (roller culturing). It was found that the contact of the tissue with the substrate play the key role in the transduction of the regulatory signal that ensures the maintenance of cornea viability and affects proliferation and migration of cornea cells  相似文献   

3.
G Cotsarelis  S Z Cheng  G Dong  T T Sun  R M Lavker 《Cell》1989,57(2):201-209
Despite the obvious importance of epithelial stem cells in tissue homeostasis and tumorigenesis, little is known about their specific location or biological characteristics. Using 3H-thymidine labeling, we have identified a subpopulation of corneal epithelial basal cells, located in the peripheral cornea in a region called limbus, that are normally slow cycling, but can be stimulated to proliferate in response to wounding and to a tumor promotor, TPA. No such cells can be detected in the central corneal epithelium, suggesting that corneal epithelial stem cells are located in the limbus. A comparison of various types of epithelial stem cells revealed a common set of features, including their preferred location, pigment protection, and growth properties, which presumably play a crucial role in epithelial stem cell function.  相似文献   

4.
In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell(LESC)hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient(or transit) amplifying cells(TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell(CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed by the LESC hypothesis.  相似文献   

5.
6.
We have previously shown that a basic 64-kilodalton (no. 3 in the catalog of Moll et al.) and an acidic 55-kilodalton (no. 12) keratin are characteristic of suprabasal cell layers in cultured rabbit corneal epithelial colonies, and therefore may be regarded as markers for an advanced stage of corneal epithelial differentiation. Moreover, using an AE5 mouse monoclonal antibody, we showed that the 64-kilodalton keratin marker is expressed suprabasally in limbal epithelium but uniformly (basal layer included) in central corneal epithelium, suggesting that corneal basal cells are in a more differentiated state than limbal basal cells. In conjunction with previous data implicating the centripetal migration of corneal epithelial cells, our data support a model of corneal epithelial maturation in which corneal epithelial stem cells are located in the limbus, the transitional zone between the cornea and conjunctiva. In the present study, we analyzed the expression of the 64-kilodalton keratin in developing human corneal epithelium by immunohistochemical staining. At 8 weeks of gestation, the presumptive corneal epithelium is composed of a single layer of cuboidal cells with an overlying periderm; neither of these cell layers is AE5 positive. At 12-13 weeks of gestation, some superficial cells of the three- to four-layered epithelium become AE5 positive, providing the earliest sign of overt corneal epithelial differentiation. At 36 weeks, although the epithelium is morphologically mature (four to six layers), AE5 produces a suprabasal staining pattern, this being in contrast to the adult epithelium which exhibits uniform staining.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Chen B  Mi S  Wright B  Connon CJ 《PloS one》2010,5(10):e13192

Background

Identification of stem cells from a corneal epithelial cell population by specific molecular markers has been investigated previously. Expressions of P63, ABCG2 and K14/K5 have all been linked to mammalian corneal epithelial stem cells. Here we report on the limitations of K14/K5 as a limbal stem cell marker.

Methodology/Principal Findings

K14/K5 expression was measured by immunohistochemistry, Western blotting and Real time PCR and compared between bovine epithelial cells in the limbus and central cornea. A functional study was also included to investigate changes in K5/14 expression within cultured limbal epithelial cells undergoing forced differentiation. K14 expression (or its partner K5) was detected in quiescent epithelial cells from both the limbal area and central cornea. K14 was localized predominantly to basal epithelial cells in the limbus and suprabasal epithelial cells in the central cornea. Western blotting revealed K14 expression in both limbus and central cornea (higher levels in the limbus). Similarly, quantitative real time PCR found K5, partner to K14, to be expressed in both the central cornea and limbus. Following forced differentiation in culture the limbal epithelial cells revealed an increase in K5/14 gene/protein expression levels in concert with a predictable rise in a known differentiation marker.

Conclusions/Significance

K14 and its partner K5 are limited not only to the limbus but also to the central bovine cornea epithelial cells suggesting K14/K5 is not limbal specific in situ. Furthermore K14/K5 expression levels were not lowered (in fact they increased) within a limbal epithelial cell culture undergoing forced differentiation suggesting K14/K5 is an unreliable maker for undifferentiated cells ex vivo.  相似文献   

8.
Streaming of labelled cells in the conjunctival epithelium   总被引:4,自引:0,他引:4  
This study examines epithelial cell streaming and turnover in normal rat bulbar conjunctiva. Twenty seven male adult random-bred Hebrew rats weighing between 250–300 g, were injected i.p. with [3H]-thymidine. Three rats were killed at various times, thereafter from 1 h to 28 days. The enucleated eyes were fixed in formalin, cut into 5 μ thick sections, dipped into liquid emulsion, exposed for three weeks and stained with haematoxylin and eosin. Conjunctival epithelium was scanned from the limbus and outward, using an ocular micrometer grid with 10 x 10 divisions. In each consecutive field the grid was positioned along the basement membrane which was defined as the x-axis. The y-axis extended from the basement membrane outward. The x, y coordinate of each nucleus with three grains or more and its grain content were recorded along the entire epithelium. Conjunctival epithelium is divided into two cell kinetic compartments: a progenitor (P), along the basal and supra basal layer, in which cells proliferate, and a non proliferating Q-compartment, in the layers above. One hour after labelling most of the labelled cells were in the basal and supra basal layers. From then onward labelled cells streamed along both axes. Their x-velocity was 10·5±2·4 μ/day and the y-velocity 9·3 ± 5·4 μ/day. Cells are eliminated at the epithelial surface which is the outer Q-compartment boundary. Basal cell turnover was estimated from grain count dilution curves. The time it takes for the grains in a cell to reach half of their initial value was 8·3 days. It is closely related to the cell's generation time. The present study demonstrates that conjunctival epithelium in the rat streams along two axes, x, and y: 1 The x-axis extends along the basal layer, from the limbus and outward. 2 The y-axis extends from the basal layer into the layers above it. Cells first stream along the x-direction and then turn y-ward. Since cells are ultimately exfoliated from the conjunctival surface, and since the conjunctiva maintains steady state, we propose that stem cells located in the limbus generate transitional cells that stream along the two axes. Macroscopically the limbus is circular, and the stem cells are situated around the cornea. Each stem cell and its streaming progeny can be viewed as a conjunctival epithelial unit. We propose that conjunctival and corneal epithelium, are the descendants of an uncommitted stem cell that generates two differentiation pathways, a corneal and a conjunctival.  相似文献   

9.
Umemoto T  Yamato M  Nishida K  Kohno C  Yang J  Tano Y  Okano T 《FEBS letters》2005,579(29):6569-6574
The side population (SP) phenotype is shared by stem cells in various tissues and species. Here we demonstrate SP cells with Hoechst dye efflux were surprisingly collected from the epithelia of both the rat limbus and central cornea, unlike in human and rabbit eyes. Our results show that rat limbal SP cells have a significantly higher expression of the stem cell markers ABCG2, nestin, and notch 1, compared to central corneal SP cells. Immunohistochemistry also revealed that ABCG2 and the epithelial stem/progenitor cell marker p63 were expressed only in basal limbal epithelial cells. These results demonstrate that ABCG2 expression is closely linked to the stem cell phenotype of SP cells.  相似文献   

10.
The corneal epithelial stem cell   总被引:4,自引:0,他引:4  
The aim of this paper was to develop a GFP-expressing transgenic mouse model for the keratoepithelioplasty and to use this to follow the outcome of this form of graft, when placed on an inflamed corneal surface. Further aims were to characterize both the graft and the epithelial surface of the mouse and rat cornea using putative stem cell markers (P63 and Telomerase) and marker of cell differentiation (14-3-3 sigma). Keratepithelioplasty was carried out using a GFP transgenic mouse cornea as donor tissue. Fluorescent epithelial outgrowth from each keratepithelioplasty was scored and quantified. Donor corneal graft tissue was obtained from the paracentral region or the anatomical limbal region of murine corneas. Paracentral donor grafts (n = 20) consistently demonstrated a significant increase in proliferative potential compared to grafts obtained from the anatomical limbal region of the mouse cornea (n = 25) (P = 0.000, Mann-Whitney U). Correspondingly, P63 expression was maximal in the paracentral region of the mouse cornea, in keeping with the demonstrated increased proliferative potential of donor grafts harvested from this region of the cornea. The murine corneal epithelium demonstrated decreased rather than increased cellular layers at the limbal region, in contrast to that of the rat or human epithelium. In addition, as a general finding in all species tested, there was an apparent increase noted in P63 expression in basal corneal epithelial cells in regions that had increased cellular layers (limbus in humans and rats and the paracentral corneal region in the mouse). Epithelium, which had migrated from donor grafts onto recipient corneas, retained P63 expression for the period of time examined (up to 3 days postengraftment). In addition, the conjunctival surface of an injured conjunctivalized displayed an abnormal pattern of P63 expression. Telomerase expression was widespread throughout many layers of both the murine and rat corneal epithelium. In the mouse and rat corneal epithelium P63 expression was maximal in areas of increased proliferative potential. Its expression, however, was not confined to stem cells alone. Migrating cells from transplanted keratoepithelial grafts retained P63 expression at least in the early stages post-transplantation. Finally, damaged conjunctivalized corneas displayed an abnormal P63 expression pattern when compared to either normal conjunctiva or normal cornea.  相似文献   

11.
In this study, we examined the postnatal expression patterns of p63 and other keratinocyte stem cell markers in the rat cornea in an attempt to determine the markers that best represent characteristics of corneal keratinocyte stem cells. We show that the expression of p63 in the rat cornea is unique and differs from that observed in humans. It changes with age, from central cornea-positive, peripheral cornea-positive, and limbus-positive, to central cornea-positive, peripheral cornea-positive, and limbus-negative, and finally to central cornea-negative, peripheral cornea-positive, and limbus-negative, as examined by immunohistochemical staining. However, when a more sensitive staining method was used, the limbus was also shown to be positive for p63, indicating a lower level of expression than that of the peripheral cornea. The basal layer of the rat limbal epithelium is the site where -catenin+, K14+, PCNA-, and K3- cells reside. This cell layer is also the site where slow-cycling cells are located. In contrast with observations made in humans, our results clearly indicate that p63 is expressed in stem cells and young transient amplifying cells of the rat cornea, with higher levels of expression in the latter.  相似文献   

12.
A strong cohort of evidence exists that supports the localisation of corneal stem cells at the limbus. The distinguishing characteristics of limbal cells as stem cells include slow cycling properties, high proliferative potential when required, clonogenicity, absence of differentiation marker expression coupled with positive expression of progenitor markers, multipotency, centripetal migration, requirement for a distinct niche environment and the ability of transplanted limbal cells to regenerate the entire corneal epithelium. The existence of limbal stem cells supports the prevailing theory of corneal homeostasis, known as the XYZ hypothesis where X represents proliferation and stratification of limbal basal cells, Y centripetal migration of basal cells and Z desquamation of superficial cells. To maintain the mass of cornea, the sum of X and Y must equal Z and very elegant cell tracking experiments provide strong evidence in support of this theory. However, several recent stud-ies have suggested the existence of oligopotent stem cells capable of corneal maintenance outside of the limbus. This review presents a summary of data which led to the current concepts of corneal epithelial homeostasis and discusses areas of controversy surrounding the existence of a secondary stem cell reservoir on the corneal surface  相似文献   

13.
In search of markers for the stem cells of the corneal epithelium   总被引:5,自引:0,他引:5  
The anterior one-fifth of the human eye is called the cornea. It consists of several specialized cell types that work together to give the cornea its unique optical properties. As a result of its smooth surface and clarity, light entering the cornea focuses on the neural retina allowing images to come into focus in the optical centres of the brain. When the cornea is not smooth or clear, vision is impaired. The surface of the cornea consists of a stratified squamous epithelium that must be continuously renewed. The cells that make up this outer covering come from an adult stem cell population located at the corneal periphery at a site called the corneal limbus. While engaging in the search for surface markers for corneal epithelial stem cells, vision scientists have obtained a better understanding of the healthy ocular surface. In this review, we summarize the current state of knowledge of the ocular surface and its adult stem cells, and analyse data as they now exist regarding putative corneal epithelial stem cell markers.  相似文献   

14.
The effect of the adhesion protein isolated from the bovine cornea was studied on the model of mechanical injury (cross cutting of the cornea). In the concentration of 10?12 mg/ml, the protein influenced the proliferation of corneal epithelial cells in newt Pleurodeles waltl in vivo. Experiments were conducted using autoradiography, and the nuclear labeling index (NLI) was determined at different times after surgery and in different corneal regions. This adhesion protein significantly induced proliferation of corneal epithelial cells relative to control groups with the injured eyes treated with the serum adhesion protein at the same concentration or water. The differences between the experimental and control animals were most pronounced 7 days after surgery. By day 14, they were less pronounced but still significant. On day 28, no significant differences in NLI were observed between the three groups, although these values remained higher than in intact animals. An increased pool of proliferating cells in the corneal epithelium was observed both in the affected and intact areas. The data obtained indicate that the biological activity of this protein is not species specific and that it can be a proliferation factor for corneal epithelial cells.  相似文献   

15.
Tenascin-X has been studied in developing and adult rat eye and in foetal and adult human eyes, using immunohistochemistry and frozen sections. The data were compared with the distribution of tenascin-C. The immunoreactivity for tenascin-X was seen in a basement membrane-like feature in different structures of embryonic (E) day 16–17 rat eyes. Postnatal (P) day 2 and older rat eyes showed immunoreactivity for tenascin-X in different connective tissues. In the epithelial basement membrane zone of the cornea, immunostaining was positive in P5 eyes, negative in P10 and P15 eyes and again positive in P30 and adult eyes. In the 20-week-old human foetus, immunoreactivity for the tenascin was seen in the posterior parts of the conjunctival stroma adjacent to the sclera and in a basement membrane-like fashion in anterior conjunctiva. In the adult human eye, immunoreactivity for tenascin-X was seen in the anterior one-third stroma of cornea as thin fibrils, in the stroma of the limbus and conjunctiva, and in blood vessels. Immunostaining for tenascin-C was seen in the posterior aspect of the further cornea, and in mesenchyme adjacent to cornea in E16–17 rat eyes. Corneal keratocytes and Descemet's membrane showed immunoreactivity for tenascin-C in P2–P15 rat eyes. Sclera and the junction of the cornea, and sclera expressed tenascin-C in P2 and older rat eyes. In human foetal eyes, immunostaining for tenascin-C was seen in the anterior parts of the corneal stroma, in the basement membrane zone and Bowman's membrane of the corneal epithelium, in the posterior one-fifth of the corneal stroma and the sclera starting from the junction of the cornea and sclera. In normal human adult eyes, immunostaining for tenascin-X was seen in the anterior one-third stroma of cornea, in the stroma of limbus and conjunctiva, and in blood vessels. The association of tenascin-X and basement membranes in early development evokes a question of its potential function in the development of the basement membrane. The results also suggest the association of tenascin-X with connective tissue development as well as the association of tenascin-C with the migration of keratocytes during the development of the corneal stroma.  相似文献   

16.
Summary This paper presents a reliable method for establishing pure cultures of the three types of corneal cells. This is believed to be the first time, corneal cells have been cultured from fetal pig corneas. Cell growth studies were performed in different media. Subcultures of the three corneal cell types were passaged until the 30th generation without their showing signs of senescence. For engineering an in vitro cornea, corneal epithelial cells were cultured over corneal stromal cells in an artificial biomatrix of collagen with an underlying layer of corneal endothelial cells. The morphology, histology, and differentiation of the in vitro cornea were investigated to determine the degree of comparability to the cornea in vivo. The in vitro construct displayed signs of transition to an organotypic phenotype of which the most prominent was the formation of two basement membranes.  相似文献   

17.
The aim of this study was to detect a spectrum of cytokeratins (CK) present in the adult human cornea, limbus and perilimbal conjunctiva. Cryosections from seven corneo-scleral discs were fixed, and indirect immunofluorescent staining was performed using antibodies directed against CK1-CK10 and CK13-CK20. The percentage of positive cells was calculated in the epithelium of the cornea, limbus and perilimbal conjunctiva. Quantitative real time RT-PCR (qRT-PCR) was used to detect CK6 and CK18 expression in the corneal and conjunctival epithelium. The most intense staining present throughout the cornea was observed for CK3, CK5 and CK14; CK19 was found at the corneal periphery only. CK4 and CK10/13 revealed mild to moderate positivity mostly in the superficial layers of the cornea. The suprabasal cell layers of all examined areas showed a strong positivity for CK16. A heterogeneous staining pattern with a centrifugal decrease in the signal was observed for CK8 and CK18. CK5/6, CK14 and CK19 were present in the limbus, where a positive signal for CK3 was observed in the suprabasal and superficial cells only. In contrast to the cornea, CK15 appeared in the basal and suprabasal layers of the limbus. The perilimbal conjunctiva showed strong immunostaining for CK10/13, CK14 and CK19. A moderate signal for CK7 was detected in the superficial layers of the conjunctiva. qRT-PCR confirmed CK6 and CK18 expression in the corneal and conjunctival epithelium. The detailed characterization of the corneal, limbal and perilimbal conjunctival epithelium under normal circumstances may be useful for characterizing the changes occurring under pathological conditions.  相似文献   

18.
Peroxiredoxin I and II are both 2-Cys members of the peroxiredoxin family of antioxidant enzymes and inactivate hydrogen peroxide. On western blotting, both enzymes appeared as 22-kD proteins and were present in the sclera, retina and iris. Immunohistochemistry showed strong cytoplasmic labeling in the basal cells of the corneal epithelial layer and the corneoscleral limbus. The melanocytes within the stroma of the iris and the anterior epithelial cells of the lens also showed strong cytoplasmic labeling. The fibrous structure of the stroma and the posterior surface of the ciliary body were also labeled. There was also strong labeling for both enzymes in the photoreceptors and the inner and outer plexiform layers of the retina. There was increased labeling of peroxiredoxin I and II in pterygium. In normal conjunctiva and cornea, only the basal cell layer showed labeling for peroxiredoxin I and II, whereas, in pterygia, there was strong cytoplasmic labeling in most cells involving the full thickness of the epithelium. Co-localization of the DNA oxidation product 8-hydroxy-2’-deoxyguanosine antibody with the nuclear dye 4’,6’-diamidino-2-phenylindole dihydrochloride indicated that the majority of the oxidative damage was cytoplasmic; this suggested that the mitochondrial DNA was most affected by the UV radiation in this condition.  相似文献   

19.
Many researchers have employed cryopreserved amniotic membrane (CAM) in the treatment of a severely damaged cornea, using corneal epithelial cells cultured on an amniotic membrane (AM). In this study, two Teflon rings were made for culturing the cells on the LAM and CAM, and were then used to support the AM, which is referred to in this paper as an Ahn’s AM supporter. The primary corneal epithelial cells were obtained from the limbus, using an explantation method. The corneal epithelium could be reconstructed by culturing the third-passage corneal epithelial cells on the AM. A lyophilized amniotic membrane (LAM) has a higher rate of graft take, a longer shelf life, is easier to store, and safer, due to gamma irradiation, than a CAM. The corneal epithelium reconstructed on the LAM and CAM, supported by the two-Teflon rings, was similar to normal corneal epithelium. However, the advantages of the LAM over that of the CAM make the former more useful. The reconstruction model of the corneal epithelium, using AM, is considered as a goodin vitro model for transplantation of cornel epithelium into patients with a severely damaged cornea.  相似文献   

20.
We assessed the maintenance and distribution of epithelial stem/progenitor cells after corneal reconstruction using tissue-engineered oral mucosal cell sheets in a rat model. Oral mucosal biopsy specimens were excised from green fluorescent protein (GFP) rats and enzymatically treated with Dispase II. These cells were cultured on inserts with mitomycin C-treated NIH/3T3 cells, and the resulting cell sheets were harvested. These tissue-engineered cell sheets from GFP rats were transplanted onto the eyes of a nude rat limbal stem cell deficiency model. Eight weeks after surgery, ocular surfaces were completely covered by the epithelium with GFP-positive cells. Transplanted corneas expressed p63 in the basal layers and K14 in all epithelial layers. Epithelial cells harvested from the central and peripheral areas of reconstructed corneas were isolated for a colony-forming assay, which showed that the colony-forming efficiency of the peripheral epithelial cells was significantly higher than that of the central epithelial cells 8 weeks after corneal reconstruction. Thus, in this rat model, the peripheral cornea could maintain more stem/progenitor cells than the central cornea after corneal reconstruction using oral mucosal epithelial cell sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号