首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Genetic alterations of regenerated plants based on the tissue culture process (somaclonal variation) have become common for many plant species including soybean [Glycine max (L.) Merr.]. The objective of this study was to test for the presence of tissue-culture-derived genetic variation in eight agronomic traits in homozygous progeny regenerated by organogenesis using the commercially important cultivar Asgrow A3127. A total of 86 lines derived by repeated self-pollination of nine regenerated plants was grown in two locations for 2 years. When compared to the unregenerated parent, statistically significant variation (P<0.05) was found for maturity, lodging, height, seed protein and oil, but not for seed quality, seed weight, or seed yield. All of the variation noted was beneficial and did not involve decreased yield. Since the differences were not large, the results indicate that the tissue culture process is not necessarily detrimental to plant performance, which is an important consideration since tissue culture techniques are used in many genetic engineering methods.  相似文献   

2.
Calli were induced from the explants of young inflorescences of a haploid wheat pollen plant of wheat (Triticum aestivum L.). The calli were subcultured and 138 regenerated plants were differentiated from them. Among the plants 5 set 42 seeds from which 34 R2 plants were obtained. The R2 plants varied in plant height, awnedness, waxiness and maturation period. In R3 generation some somaclone lines segregated but most of them were more or less stable. All clone lines were stable in R4 generation. According to the assay of seed prorein content of 82 selected clones from over 100 R5 stable clones, 5 clones with high protein content, which varied from 19.16% to 21.33%, were discovered. Repeated assay in R6 generation confirmed the results. Differences in electrophoresis pattern of seed protein and amino acid content among clones were also recorded.  相似文献   

3.
greenhouse experiment with factorial arrangement based on randomized complete block design with four replications was conducted in 2015 to evaluate the effects of salicylic acid (SA) (1 mM) and jasmonic acid (JA) (0.5 mM) on oil accumulation and fatty acid composition of soybean oil (Glycine max L.) under salt stress (Non-saline, 4, 7, and 10 dS/m NaCl). Oil percentage of soybean seeds declined, while oil content per seed enhanced with increasing seed filling duration. Foliar application of SA improved oil content per soybean seed at different stages of development under all salinity levels. Although JA treatment enhanced seed oil percentage, oil yield of these plants decreased as a result of reduction in seed yield per plant. In contrast, the highest oil yield was recorded for SA treated plants, due to higher seed yield. Salinity had no significant effects on percentage of palmitic acid and stearic acid, but treatment with JA significantly reduced stearic acid percentage. Oleic acid content of seeds increased, but percentages of linoleic acid, linolenic acid and unsaturation index (UI) of soybean oil decreased with increasing salinity. Foliar application of SA and JA improved oil quality of soybean seeds by reducing oleic acid and enhancing linoleic acid, linolenic acid contents and UI. Exogenous application of SA had the most beneficial effects on soybean seeds due to enhancing oil yield and quality under saline and non-saline conditions.  相似文献   

4.
Summary A reduction in K supply to soybean plants to deficiency levels during both vegetative and reproductive development resulted in reductions not only in yield, but also in oil and K concentrations in the seed and a concomittant increase in seed protein concentration. Correlations between mean fruit yield and oil, protein and K concentrations, over a wide range of K regimes, were 0.97, −0.94 and 0.98, respectively. When K supply was increased well above the level necessary to produce maximum yields,i.e. luxury consumption, there was no significant change in K concentration in the seed, indicating a high degree of control in the movement of K to the developing seed under high K regimes. When the K supply to the plant was limiting, the rate of accumulation of oil and carbohydrate fractions, but not of seed protein, declined during the latter part of podfilling. This resulted in a fall in the C/N ratio in the non-structural seed components during this part of seed development. Depriving plants of K only during seed development had no effect on seed composition or yield, whereas resupplying K to deficient plants after anthesis resulted in almost the same seed composition and yield as that which occurred with control plants. Possible mechanisms whereby K deficiency influences soybean seed composition and yield are discussed in terms of movement of carbohydrate and nitrogen to the seed. We suggest that potassium-deficient soils are likely to produce crops with low yields and low seed oil levels; the crop may respond to K fertilizers as late as anthesis.  相似文献   

5.
 Soybean, Glycine max (L.) Merr., genotypes are known to differ in chlorimuron ethyl sensitivity (CS). Earlier we have reported two putatively independent marker loci linked to two quantitative trait loci (QTLs) controlling CS in a soybean population derived from a cross of PI97100 (sensitive to chlorimuron ethyl) and ‘Coker 237’ (tolerant to chlorimuron ethyl). The objective of the present study was to quantify the association of the two marker loci with seed yield and related traits in this soybean population following application of chlorimuron ethyl. Phenotypic data were collected for 111 F2-derived lines of the cross grown in replicated plots at Athens, G.A., in 1994 and 1995, and at Blackville, S.C., in 1995. The two CS marker loci explained as much as 50% of the genetic variation in seed yield and seed number m-2, but had no association with seed weight, plant height, lodging, seed protein, and seed oil. There were no epistatic interactions between the two marker loci for any of the traits. The marker locus (cr168-1 on USDA linkage group E) linked to the major CS QTL explained between 13 and 23% of the variation in seed yield. The Coker 237 allele at this locus was associated with decreased CS and increased seed yield. The marker locus (Blt015-2 on an unknown linkage group) linked to the minor CS QTL accounted for a maximum of 11% of the variation in seed yield. The Coker 237 allele at this locus was associated with an increase in CS and a decrease in seed yield. The association of the two marker loci with seed number m-2 strongly resembled their association with seed yield. Seed yield had a strong positive correlation (r=0.74 – 0.94) with seed number m-2, and the effect of chlorimuron ethyl on seed yield was due mainly to its effect on seed number m-2 rather than seed weight. Received: 6 August 1996 / Accepted: 28 February 1997  相似文献   

6.
作为重要的粮油饲兼用作物,大豆为世界膳食提供高达约71%的蛋白质和29%的油脂。随着人口不断增长和大豆消费需求的不断提高,在有限的耕地面积和单产条件下,大豆品质的遗传改良则更具重要意义。该文综述了大豆种子蛋白和油脂含量两个重要品质性状调控的研究进展,总结了调控大豆蛋白和油脂合成的关键酶和转录因子及因子间的相互作用,并根据蛋白和油脂合成代谢调控途径中关键酶和转录因子作用机制,绘制了大豆蛋白和油脂合成代谢的分子调控网络。此外,该文还讨论了当前大豆种子蛋白油脂含量调控研究存在的瓶颈及对策,以期为大豆种子品质的遗传改良和高产品种培育提供参考。  相似文献   

7.
Soybean is globally cultivated primarily for its protein and oil. The protein and oil contents of the seeds are quantitatively inherited traits determined by the interaction of numerous genes. In order to gain a better understanding of the molecular foundation of soybean protein and oil content for the marker-assisted selection (MAS) of high quality traits, a population of 185 soybean germplasms was evaluated to identify the quantitative trait loci (QTLs) associated with the seed protein and oil contents. Using specific length amplified fragment sequencing (SLAF-seq) technology, a total of 12,072 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF)?≥?0.05 were detected across the 20 chromosomes (Chr), with a marker density of 78.7 kbp. A total of 31 SNPs located on 12 of the 20 soybean chromosomes were correlated with seed protein and oil content. Of the 31 SNPs that were associated with the two target traits, 31 beneficial alleles were identified. Two SNP markers, namely rs15774585 and rs15783346 on Chr 07, were determined to be related to seed oil content both in 2015 and 2016. Three SNP markers, rs53140888 on Chr 01, rs19485676 on Chr 13, and rs24787338 on Chr 20 were correlated with seed protein content both in 2015 and 2016. These beneficial alleles may potentially contribute towards the MAS of favorable soybean protein and oil characteristics.  相似文献   

8.
Soybean (Glycine max) produces seeds that are rich in unsaturated fatty acids and is an important oilseed crop worldwide. Seed oil content and composition largely determine the economic value of soybean. Due to natural genetic variation, seed oil content varies substantially across soybean cultivars. Although much progress has been made in elucidating the genetic trajectory underlying fatty acid metabolism and oil biosynthesis in plants, the causal genes for many quantitative trait loci (QTLs) regulating seed oil content in soybean remain to be revealed. In this study, we identified GmFATA1B as the gene underlying a QTL that regulates seed oil content and composition, as well as seed size in soybean. Nine extra amino acids in the conserved region of GmFATA1B impair its function as a fatty acyl–acyl carrier protein thioesterase, thereby affecting seed oil content and composition. Heterogeneously overexpressing the functional GmFATA1B allele in Arabidopsis thaliana increased both the total oil content and the oleic acid and linoleic acid contents of seeds. Our findings uncover a previously unknown locus underlying variation in seed oil content in soybean and lay the foundation for improving seed oil content and composition in soybean.  相似文献   

9.

Key message

A reduction in acid detergent lignin content in oilseed rape resulted in an increase in seed oil and protein content.

Abstract

Worldwide increasing demand for vegetable oil and protein requires continuous breeding efforts to enhance the yield of oil and protein crop species. The oil-extracted meal of oilseed rape is currently mainly used for feeding livestock, but efforts are undertaken to use the oilseed rape protein in food production. One limiting factor is the high lignin content of black-seeded oilseed rape that negatively affects digestibility and sensory quality of food products compared to soybean. Breeding attempts to develop yellow seeded oilseed rape with reduced lignin content have not yet resulted in competitive cultivars. The objective of this work was to investigate the inheritance of seed quality in a DH population derived from the cross of the high oil lines SGDH14 and cv. Express. The DH population of 139 lines was tested in field experiments in 14 environments in north-west Europe. Seeds harvested from open pollinated plants were used for extensive seed quality analysis. A molecular marker map based on the Illumina Infinium 60 K Brassica SNP chip was used to map QTL. Amongst others, one major QTL for acid detergent lignin content, explaining 81% of the phenotypic variance, was identified on chromosome C05. Lines with reduced lignin content nevertheless did not show a yellowish appearance, but showed a reduced seed hull content. The position of the QTL co-located with QTL for oil and protein content of the defatted meal with opposite additive effects, suggesting that the reduction in lignin content resulted in an increase in oil and protein content.
  相似文献   

10.
11.
Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database (http://www.phytozome.net/soybean). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3′ untranslated (3′UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil concentration with no significant impact on seed protein concentration.  相似文献   

12.
褐色种皮大豆与其黄色种皮衍生亲本的表型及基因型比较   总被引:1,自引:0,他引:1  
大豆种皮色在从野生大豆到栽培大豆的选择过程中逐渐由黑色变成黄色,是重要的形态标记,因此,大豆种皮色相关基因的研究无论是对进化理论研究还是育种实践都具有非常重要的意义。利用褐色种皮J1265-2大豆及其衍生亲本黄色种皮大豆J1265-1为材料,通过SSR引物扩增片段,检验遗传背景的异同,同时对控制种皮的候选基因GmF3’H进行扩增和测序分析。结果表明,褐色种皮和黄色种皮材料不仅用161对SSR分子标记检测没有发现差异,其褐色种皮候选基因GmF3’H的编码区及起始密码子上游1465 bp序列也是一致的。因此,证明褐色种皮J1265-2大豆与其衍生亲本黄色种皮大豆J1265-1为近等基因系,其控制褐色种皮的基因型与已报道的基因型不同。  相似文献   

13.
RNAi沉默淀粉分支酶基因SBEI对玉米直链淀粉合成的影响   总被引:1,自引:0,他引:1  
淀粉分支酶(SBE)是淀粉合成的限速酶。为了研究SBEI沉默对直链淀粉合成的影响, 克隆了玉米(Zea mays)淀粉分支酶SBEI基因片段, 构建了SBEI的RNAi表达载体pBAC418, 用基因枪将其导入玉米自交系幼胚愈伤组织, 经木糖筛选获得了7株转化再生植株。利用FAD2 intron和xylA基因探针对T0代再生玉米植株进行DNA dot blot和PCR-Southern检测, 证实5株为阳性植株, 其中4株正常结实。SBEI基因沉默对阳性再生玉米株系籽粒的含油量没有显著影响; 蛋白质含量显著高于受体对照; 总淀粉含量与对照相比无显著差异, 转基因株系直链淀粉含量平均提高了9.8%。  相似文献   

14.
Seed quality QTLs identified in a molecular map of early maturing soybean   总被引:23,自引:0,他引:23  
This study identified QTLs influencing seed quality characters in a cross of two early maturing soybean (Glycine max [L.] Merr.) cultivars (Ma.Belle and Proto) adapted to the short growing seasons of Central Europe. A molecular linkage map was constructed by using 113 SSR, 6 RAPD and 1 RFLP markers segregating in 82 individuals of an F2 population. The map consists of 23 linkage groups and corresponds wellto previously published soybean maps. Using phenotypic data of the F2-derived lines grown in five environments, four markers for protein content, three for oil content and eight for seed weight were identified. Four from fifteen seed quality QTL-regions identified in the present study were also found by other authors. Markers associated with seed weight QTLs were consistent across all environments and proved to have effects large enough to be useful in a marker-assisted breeding program, whereas protein and oil QTLs showed environmental interactions. Received: 9 October 2000 / Accepted: 26 February 2001  相似文献   

15.
Two genomic clones, encoding isoforms A and B of the 24 kDa soybean oleosin and containing 5 kbp and 1 kbp, respectively, of promoter sequence, were inserted separately into rapeseed plants. T2 seeds from five independent transgenic lines, three expressing isoform A and two expressing isoform B, each containing one or two copies of the transgene, were analysed in detail. In all five lines, the soybean transgenes exhibited the same patterns of mRNA and protein accumulation as the resident rapeseed oleosins, i.e. their expression was absolutely seed-specific and peaked at the mid-late stages of cotyledon development. The 24 kDa soybean oleosin was targeted to and stably integrated into oil bodies, despite the absence of a soybean partner isoform. The soybean protein accumulated in young embryos mainly as a 23 kDa polypeptide, whereas a 24 kDa protein predominated later in development. The ratio of rapeseed:soybean oleosin in the transgenic plants was about 5:1 to 6:1, as determined by SDS-PAGE and densitometry. Accumulation of these relatively high levels of soybean oleosin protein did not affect the amount of endogenous rapeseed oleosin. Immunoblotting studies showed that about 95% of the recombinant soybean 24 kDa oleosin (and the endogenous 19 kDa rapeseed oleosin) was targeted to oil bodies, with the remainder associated with the microsomal fraction. Sucrose density-gradient centrifugation showed that the oleosins were associated with a membrane fraction of buoyant density 1.10–1.14 g ml?1, which partially overlapped with several endoplasmic reticulum (ER) markers. Unlike oleosins associated with oil bodies, none of the membrane-associated oleosins could be immunoprecipitated in the presence of protein A-Sepharose, indicating a possible conformational difference between the two pools of oleosin. Complementary electron microscopy-immunocytochemical studies of transgenic rapeseed revealed that all oil bodies examined could be labelled with both the soybean or rapeseed anti-oleosin antibodies, indicating that each oil body contained a mixed population of soybean and rapeseed oleosins. A small but significant proportion of both soybean and rapeseed oleosins was located on ER membranes in the vicinity of oil bodies, but none were detected on the bulk ER cisternae. This is the first report of apparent targeting of oleosins via ER to oil bodies in vivo and of possible associated conformational/ processing changes in the protein. Although oil-body formation per se can occur independently of oleosins, it is proposed that the relative net amounts of oleosin and oil accumulated during the course of seed development are a major determinant of oil-body size in desiccation-tolerant seeds.  相似文献   

16.
Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.  相似文献   

17.
Molecular markers provide the opportunity to identify marker-quantitative trait locus (QTL) associations in different environments and populations. Two soybean [Glycine max (L.) Merr.] populations, Young x PI 416 937 and PI 97100 x Coker 237, were evaluated with restriction fragment length polymorphism (RFLP) markers to identify additional QTLs related to seed protein and oil. For the Young x PI 416937 population, 120 F4-derived lines were secored for segregation at 155 RFLP loci. The F4-derived lines and two parents were grown at Plains, G.a., and Windblow and Plymouth, N.C. in 1994, and evaluated for seed protein and oil. For the PI 97100 x Coker 237 population, 111 F2-derived lines were evaluated for segregation at 153 RFLP loci. Phenotypic data for seed protein and oil were obtained in two different locations (Athens, G.a., and Blackville, S.C.) in 1994. Based on single-factor analysis of variance (ANOVA) for the Young x PI 416937 population, five of seven independent markers associated with seed protein, and all four independent markers associated with seed oil in the combined analysis over locations were detected at all three locations. For the PI 97 100 x Coker 237 population, both single-factor ANOVA and interval mapping were used to detect QTLs. Using single-factor ANOVA, three of four independent markers for seed protein and two of three independent markers for seed oil were detected at both locations. In both populations, singlefactor ANOVA, revealed the consistency of QTLs across locations, which might be due to the high heritability and the relatively few QTLs with large effects conditioning these traits. However, interval mapping of the PI 97100 x Coker 237 population indicated that QTLs identified at Athens for seed protein and oil were different from those at Blackville. This might result from the power of QTL mapping being dependent on the level of saturation of the genetic map. Increased seed protein was associated with decreased seed oil in the PI 97100 x Coker 237 population (r = –0.61). There were various common markers (P0.05) on linkage groups (LG) E, G,H,K, and UNK2 identified for both seed protein and oil. One QTL on LG E was associated with seed protein in both populations. The other QTLs for protein and oil were population specific.  相似文献   

18.
新收集大豆种质资源主要品质鉴定与评价   总被引:5,自引:0,他引:5  
对"十五"期间新收集、保存入国家种质资源库的841份大豆种质资源的蛋白质、脂肪两个主要品质性状进行了鉴定评价.结果表明,蛋白质、脂肪含量均近似正态分布,最大频度分别出现在41.01%~ 42.00%含量范围和20.01%~21.00%含量范围.与以前收集、保存的种质资源相比,新收集种质资源的蛋白质含量呈下降趋势,而脂肪含量和蛋脂总量呈上升趋势.不同类型种质资源的品质性状比较结果表明,地方品种的蛋白质总体水平明显高于育种材料、引进种质和选育品种3种类型,引进种质的脂肪、蛋脂总量的总体水平明显高于其他3种类型.国内种质资源高蛋白质大豆占有率高于引进种质资源;引进种质资源高脂肪、高蛋白兼高油的大豆占有率高于国内种质资源.  相似文献   

19.

Premise of the Study

Nearly all seed plants rely on stored seed reserves before photosynthesis can commence. Natural selection for seed oil traits must have occurred over 319 million years of evolution since the first seed plant ancestor. Accounting for the biogeographic distribution of seed oil traits is fundamental to understanding the mechanisms of adaptive evolution in seed plants. However, the evolution of seed oils is poorly understood. We provide evidence of the adaptive nature of seed oil traits at the intraspecific and interspecific levels in Brassicaceae—an oilseed‐rich and economically important plant family.

Methods

Univariate statistics, Pearson's correlation, multiple regression, generalized linear mixed model analysis, and phylogenetic autocorrelation tests on seed oil traits of 360 accessions of Arabidopsis thaliana and 216 Brassicaceae species helped provide evidence of the adaptive nature of seed oil traits.

Key Results

At higher latitudes, both seed oil content and unsaturated fatty acids have selective advantages in Arabidopsis thaliana (intraspecific‐level), while only unsaturated fatty acids have selective advantages across 216 Brassicaceae species (interspecific‐level). The seed oil patterns fit within the theoretical framework of the gradient model. Seed oil content increases significantly from temperate to subtropical to tropical regions in Brassicaceae herbs. Absence of phylogenetic signals for seed oil traits and high seed oil content in four tribes of Brassicaceae were observed.

Conclusions

Multiple seed oil traits are adaptive in nature and follow a gradient model. Consistent evolutionary patterns of seed oil traits were observed at the intraspecific and interspecific levels in Brassicaceae. Seed oil traits change with latitude and across biomes, suggesting selection. The absence of a phylogenetic signal for seed oil traits and the occurrence of high seed oil content in four Brassicaceae tribes provides evidence of the adaptive nature of seed oil traits in Brassicaceae.  相似文献   

20.
土壤有效硅对大豆生长发育和生理功能的影响   总被引:19,自引:0,他引:19  
人工调节土壤有效硅含量及盆栽试验,研究土壤有效硅对大豆生长发育和生理功能的影响。结果表明,土壤有效硅含量在55.1~202.8mg·kg^-1范围内,随着土壤有效硅含量的提高,大豆种子萌发过程中蛋白酶和脂肪酶活性升高,淀粉酶活性无显著变化,呼吸速率加快,种子活力升高,萌发速度加快,种子萌发率无显著变化;幼苗生长过程中叶片叶绿素含量无显著变化,光合速率加快,根系活力、硝酸还原酶活力升高,蒸腾强度减弱,水分利用效率和叶含水量升高,抗旱保水能力提高。大豆幼苗含硅量与土壤有效硅含量呈线性正相关趋势(r=0.994)。土壤有效硅含量大于2028mg·kg^-1,生理功能不再显著变化,说明土壤中的硅被大豆吸收后,改善了大豆萌发种子和幼苗的生理功能,使种子萌发和幼苗生长加快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号