首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
Corynebacterium glutamicum is an aerobic, Gram-positive microorganism, well known as a pro-ducer of several amino acids. Amino acid products are used on a large scale for food industry flavouring, feed additive, pharmaceutical and cosmetic purpose[1,2]. The organism is able to grow not only on glucose, fructose and lactose, but also on acetate, lactate as its sole carbon source. The growth on acetate requires its activation to acetyl-CoA. In C. glutamicum, acetate is activated in a two-step …  相似文献   

2.
In Escherichia coli, the uptake and phosphorylation of glucose is carried out mainly by the phosphotransferase system (PTS). Despite the efficiency of glucose transport by PTS, the required consumption of 1 mol of phosphoenolpyruvate (PEP) for each mol of internalized glucose represents a drawback for some biotechnological applications where PEP is a precursor of the desired product. For this reason, there is considerable interest in the generation of strains that can transport glucose efficiently by a non-PTS mechanism. The purpose of this work was to study the effect of different gene expression levels, of galactose permease (GalP) and glucokinase (Glk), on glucose internalization and phosphorylation in a E. coli PTS(-) strain. The W3110 PTS(-), designated VH32, showed limited growth on glucose with a specific growth rate (mu) of 0.03 h(-1). A low copy plasmid family was constructed containing E. coli galP and glk genes, individually or combined, under the control of a trc-derived promoter set. This plasmid family was used to transform the VH32 strain, each plasmid having different levels of expression of galP and glk. Experiments in minimal medium with glucose showed that expression of only galP under the control of a wild-type trc promoter resulted in a mu of 0.55 h(-1), corresponding to 89% of the mu measured for W3110 (0.62 h(-1)). In contrast, no increase in specific growth rate (mu) was observed in VH32 with a plasmid expressing only glk from the same promoter. Strains transformed with part of the plasmid family, containing both galP and glk genes, showed a mu value similar to that of W3110. Fermentor experiments with the VH32 strain harboring plasmids pv1Glk1GalP, pv4Glk5GalP, and pv5Glk5GalP showed that specific acetate productivity was twofold higher than in W3110. Introduction of plasmid pLOI1594, coding for pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis, to strain VH32 carrying one of the plasmids with galP and glk caused a twofold increase in ethanol productivity over strain W3110, also containing pLOI1594.  相似文献   

3.
谷氨酸棒杆菌的乙醛酸循环与谷氨酸合成   总被引:10,自引:0,他引:10  
为阐明谷氨酸棒杆菌的乙醛酸循环与菌体的生长以及谷氨酸合成之间的关系 ,以谷氨酸棒杆菌基因组测序用典型菌株Corynebacteriumglutamicum ATCC 130 32为出发菌株 ,构建了乙醛酸循环途径缺失的谷氨酸棒杆菌突变株Corynebacteriumglutamicum WTΔA。该菌株没有异柠檬酸裂解酶活性 ,不能在以乙酸盐为唯一碳源的基本培养基上生长。与出发菌株ATCC13032相比 ,WTΔA在以葡萄糖为唯一碳源的培养基上生长时不受影响 ,说明谷氨酸棒杆菌并不需要乙醛酸循环途径提供菌体生长所需的能量和生物合成反应所需的中间产物。但是 ,与出发菌株ATCC13032相比 ,WTΔA的谷氨酸合成能力大幅下降。  相似文献   

4.
Phosphoenolpyruvate-dependent glucose phosphorylation via the phosphotransferase system (PTS) is the major path of glucose uptake in Corynebacterium glutamicum, but some growth from glucose is retained in the absence of the PTS. The growth defect of a deletion mutant lacking the general PTS component HPr in glucose medium could be overcome by suppressor mutations leading to the high expression of inositol utilization genes or by the addition of inositol to the growth medium if a glucokinase is overproduced simultaneously. PTS-independent glucose uptake was shown to require at least one of the inositol transporters IolT1 and IolT2 as a mutant lacking IolT1, IolT2, and the PTS component HPr could not grow with glucose as the sole carbon source. Efficient glucose utilization in the absence of the PTS necessitated the overexpression of a glucokinase gene in addition to either iolT1 or iolT2. IolT1 and IolT2 are low-affinity glucose permeases with K(s) values of 2.8 and 1.9 mM, respectively. As glucose uptake and phosphorylation via the PTS differs from glucose uptake via IolT1 or IolT2 and phosphorylation via glucokinase by the requirement for phosphoenolpyruvate, the roles of the two pathways for l-lysine production were tested. The l-lysine yield by C. glutamicum DM1729, a rationally engineered l-lysine-producing strain, was lower than that by its PTS-deficient derivate DM1729Δhpr, which, however, showed low production rates. The combined overexpression of iolT1 or iolT2 with ppgK, the gene for PolyP/ATP-dependent glucokinase, in DM1729Δhpr enabled l-lysine production as fast as that by the parent strain DM1729 but with 10 to 20% higher l-lysine yield.  相似文献   

5.
Brita  Nyman 《Physiologia plantarum》1969,22(5):881-887
Ethanol (68.2 mM) did not appreciably affect the growth of Dipodascus aggregatus with glucose (55.5 mM] as carbon source. Growth with fructose was inhibited whereas growth with galactose was stimulated by ethanol in this concentration. The fungus could grow with ethanol as the sole carbon source. D. aggregatus did not grown with maltose as the sole carbon source. Growth with maltose + ethanol started much earlier than growth with ethanol alone. The maltose concentration of the medium did not measurably decrease during growth with maltose-n ethanol. D. aggregatus did not grow with sucrose as the sole carbon source  相似文献   

6.
7.
为了使谷氨酸棒杆菌较好地利用木糖生产有机酸,将来自Escherichia coli K-12的木糖异构酶基因xylA构建到表达载体pXMJ19中,导入Corynebacterium glutamicum ATCC13032Δldh中,成功表达了该酶基因。结果表明:重组菌株在以木糖为唯一C源进行发酵时,木糖的消耗速率为0.54 g/(L·h),木糖异构酶比酶活约为0.54 U/mL;在以木糖和葡萄糖的混合糖为C源进行发酵时,菌株优先利用葡萄糖,在葡萄糖完全消耗后,菌株开始有效利用木糖;以木糖为唯一C源进行两阶段发酵时,琥珀酸的收率可达(0.62±0.003)g/g。  相似文献   

8.
9.
The pyruvate kinase gene pyk from Corynebacterium glutamicum was cloned by applying a combination of PCR, site-specific mutagenesis, and complementation. A 126-bp DNA fragment central to the C. glutamicum pyk gene was amplified from genomic DNA by PCR with degenerate oligonucleotides as primers. The cloned DNA fragment was used to inactivate the pyk gene in C. glutamicum by marker rescue mutagenesis via homologous recombination. The C. glutamicum pyk mutant obtained was unable to grow on minimal medium containing ribose as the sole carbon source. Complementation of this phenotype by a gene library resulted in the isolation of a 2.8-kb PstI-BamHI genomic DNA fragment harboring the C. glutamicum pyk gene. Multiple copies of plasmid-borne pyk caused a 20-fold increase of pyruvate kinase activity in C. glutamicum cell extracts. By using large internal fragments of the cloned C. glutamicum gene, pyk mutant derivatives of the lysine production strain Corynebacterium lactofermentum 21799 were generated by marker rescue mutagenesis. As determined in shake flask fermentations, lysine production in pyk mutants was 40% lower than that in the pyk+ parent strain, indicating that pyruvate kinase is essential for high-level lysine production. This finding questions an earlier hypothesis postulating that redirection of carbon flow at the phosphoenol pyruvate branch point of glycolysis through elimination of pyruvate kinase activity results in an increase of lysine production in C. glutamicum and its close relatives.  相似文献   

10.
11.
Genome sequencing revealed that the Corynebacterium glutamicum genome contained, besides gltA, two additional citrate synthase homologous genes (prpC) located in two different prpDBC gene clusters, which were designated prpD1B1C1 and prpD2B2C2. The coding regions of the two gene clusters as well as the predicted gene products showed sequence identities of about 70 to 80%. Significant sequence similarities were found also to the prpBCDE operons of Escherichia coli and Salmonella enterica, which are known to encode enzymes of the propionate-degrading 2-methylcitrate pathway. Homologous and heterologous overexpression of the C. glutamicum prpC1 and prpC2 genes revealed that their gene products were active as citrate synthases and 2-methylcitrate synthases. Growth tests showed that C. glutamicum used propionate as a single or partial carbon source, although the beginning of the exponential growth phase was strongly delayed by propionate for up to 7 days. Compared to growth on acetate, the specific 2-methylcitrate synthase activity increased about 50-fold when propionate was provided as the sole carbon source, suggesting that in C. glutamicum the oxidation of propionate to pyruvate occurred via the 2-methylcitrate pathway. Additionally, two-dimensional gel electrophoresis experiments combined with mass spectrometry showed strong induction of the expression of the C. glutamicum prpD2B2C2 genes by propionate as an additional carbon source. Mutational analyses revealed that only the prpD2B2C2 genes were essential for the growth of C. glutamicum on propionate as a sole carbon source, while the function of the prpD1B1C1 genes remains obscure.  相似文献   

12.
Heterologous expression of a phytase gene (phyC) from Bacillus amyloliquefaciens DSM 7 enabled the growth of Corynebacterium glutamicum with phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate) as a new, sole source of phosphorus. Phytate was not used as a carbon source. During growth of the phyC-expressing amino acid (l-lysine)-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) with phytate as the source of phosphorus, merely a small, transient accumulation of inorganic phosphate was observed in the fermentation broth. At the later stages of fermentation, free inorganic phosphate from phytate degradation was no longer detectable. Growth and l-lysine production by the phytase-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) in phytate medium did not differ significantly from control experiments with strain C. glutamicum ATCC 21253 (pWLQ2) conducted with an excess of inorganic phosphate, demonstrating that there was no phosphate limitation when phytate was used as the phosphorus source. Under the expression conditions employed, only part of PhyC was secreted to the culture broth by C. glutamicum, but this did not significantly affect growth or lysine production.  相似文献   

13.
14.
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum   总被引:1,自引:0,他引:1  
The aerobic microorganism Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar xylose, which is commonly found in agricultural residues and other lignocellulosic biomass. We demonstrated the functionality of the corynebacterial xylB gene encoding xylulokinase and constructed two recombinant C. glutamicum strains capable of utilizing xylose by cloning the Escherichia coli gene xylA encoding xylose isomerase, either alone (strain CRX1) or in combination with the E. coli gene xylB (strain CRX2). These genes were provided on a high-copy-number plasmid and were under the control of the constitutive promoter trc derived from plasmid pTrc99A. Both recombinant strains were able to grow in mineral medium containing xylose as the sole carbon source, but strain CRX2 grew faster on xylose than strain CRX1. We previously reported the use of oxygen deprivation conditions to arrest cell replication in C. glutamicum and divert carbon source utilization towards product production rather than towards vegetative functions (M. Inui, S. Murakami, S. Okino, H. Kawaguchi, A. A. Vertès, and H. Yukawa, J. Mol. Microbiol. Biotechnol. 7:182-196, 2004). Under these conditions, strain CRX2 efficiently consumed xylose and produced predominantly lactic and succinic acids without growth. Moreover, in mineral medium containing a sugar mixture of 5% glucose and 2.5% xylose, oxygen-deprived strain CRX2 cells simultaneously consumed both sugars, demonstrating the absence of diauxic phenomena relative to the new xylA-xylB construct, albeit glucose-mediated regulation still exerted a measurable influence on xylose consumption kinetics.  相似文献   

15.
A beta-phosphoglucomutase (beta-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of beta-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h(-1), while the deletion of beta-PGM resulted in a maximum specific growth rate of 0.05 h(-1) on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as beta-glucose 1-phosphate in the medium. Furthermore, the beta-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of alpha-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the beta-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded beta-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

16.
17.
18.
Corynebacterium glutamicum was engineered for the production of L-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum DeltaaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, L-alanine, and L-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum DeltaaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and L-alanine towards L-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum DeltaaceE(pJC4ilvBNCE) produced up to 210 mM L-valine with a volumetric productivity of 10.0 mM h(-1) (1.17 g l(-1) h(-1)) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose.  相似文献   

19.
The maltose system in Escherichia coli consists of cell envelope-associated proteins and enzymes that catalyze the uptake and utilization of maltose and alpha,1-4-linked maltodextrins. The presence of these sugars in the growth medium induces the maltose system (exogenous induction), even though only maltotriose has been identified in vitro as an inducer (O. Raibaud and E. Richet, J. Bacteriol., 169:3059-3061, 1987). Induction is dependent on MalT, the positive regulator protein of the system. In the presence of exogenous glucose, the maltose system is normally repressed because of catabolite repression and inducer exclusion brought about by the phosphotransferase-mediated vectorial phosphorylation of glucose. In contrast, the increase of free, unphosphorylated glucose in the cell induces the maltose system. A ptsG ptsM glk mutant which cannot grow on glucose can accumulate [14C]glucose via galactose permeases. In this strain, internal glucose is polymerized to maltose, maltotriose, and maltodextrins in which only the reducing glucose residue is labeled. This polymerization does not require maltose enzymes, since it still occurs in malT mutants. Formation of maltodextrins from external glucose as well as induction of the maltose system is absent in a mutant lacking phosphoglucomutase, and induction by external glucose could be regained by the addition of glucose-1-phosphate entering the cells via a constitutive glucose phosphate transport system. malQ mutants, which lack amylomaltase, are constitutive for the expression of the maltose genes. This constitutive nature is due to the formation of maltose and maltodextrins from the degradation of glycogen.  相似文献   

20.
As found during continuous cultivation ofBacillus licheniformis on a semisynthetic medium (glucose or maltose as C source), the specific rate of α-amylase production is proportional to growth rate but is repressed by higher substrate concentrations. Besides glucose or maltose, peptone was also used as an alternative carbon source during cultivation. The specific rate of production of the enzyme on maltose is half that found with glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号