首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azospirillum lipoferum strain D-2 possesses the following enzymes for the assimilation of N2 and NH 4 + : nitrogenase, glutamine synthetase, NADPH-dependent glutamate synthase, NADH-/NADPH-dependent glutamate dehydrogenase, and NADH-dependent alanine dehydrogenase. Nitrogenase and glutamine synthetase are repressed, whereas glutamate dehydrogenase and alanine dehydrogenase are induced by NH 4 + . Glutamine synthetase activity is modulated by both repression and depression and also by adenylylation.  相似文献   

2.
A study was done of the pathways of nitrogen assimilation in the facultative methylotrophsPseudomonas MA andPseudomonas AM1, with ammonia or methylamine as nitrogen sources and with methylamine or succinate as carbon sources. When methylamine was the sole carbon and/or nitrogen source, both organisms possessed enzymes of the glutamine synthetase/glutamate synthase pathway, but when ammonia was the nitrogen sourcePseudomonas AM1 also synthesized glutamate dehydrogenase with a pH optimum of 9.0, andPseudomonas MA elaborated both glutamate dehydrogenase (pH optimum 7.5) and alanine dehydrogenase (pH optimum 9.0). Glutamate dehydrogenase and glutamate synthase from both organisms were solely NADPH-dependent; alanine dehydrogenase was NADH-dependent. No evidence was obtained for regulation of glutamine synthetase by adenylylation in either organism, nor did glutamine synthetase appear to regulate glutamate dehydrogenase synthesis.  相似文献   

3.
Tomato seedlings grown on nitric medium and treated with various cadmium concentrations (0 to 50 microM) were used. Results obtained show that cadmium remains predominantly located in the roots, which then seem to play the role of trap-organs. Increasing cadmium concentration in the medium leads particularly to a decrease in NO3- accumulation, together with a decrease in the activity of glutamine synthetase and in the quantity of plastidic isoform ARNm (GS2), and, on the contrary, to an increase of the cytosolic isoform ARNm (GS1). On the other hand, stimulations were observed for NADH-dependent glutamate synthase, NADH-dependent glutamate dehydrogenase, ARNm quantity of this enzyme, ammonium accumulation, and protease activity. In parallel, stimulations were observed for NAD+ and NADP+-dependent malate dehydrogenase and NADP+-dependent isocitrate dehydrogenase. These results were discussed in relation to the hypothesis attributing to the dehydrogenase enzymes (GDH, MDH, ICDH) an important role in the plant defence processes against cadmium-induced stresses.  相似文献   

4.
Inorganic nitrogen metabolism in two cellulose degrading clostridia, the mesophile Clostridium cellobioparum and the thermophile Clostridium thermocellum was investigated. Both strains show acetylene reduction (i.e. possibly nitrogenase activity), contain glutamine synthetase, glutamate dehydrogenase and glutamate-dependent transaminases. C. cellobioparum additionally contains a NADH-dependent glutamate synthase and a NH 4 + -repressible glycine dehydrogenase (NADPH). Remarkably, acetylene reduction in C. thermocellum is not repressed by ammonium, casting doubt whether this activity is due to nitrogenase. The results are compared with the data from other saccharolytic clostridia.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase (glutamate synthase)  相似文献   

5.
The specific activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were determined in intact protoplasts and intact chloroplasts from Chlamydomonas reinhardtii. After correction for contamination, the data were used to calculate the portion of each enzyme in the algal chloroplast. The chloroplast of C. reinhardtii contained all enzyme activities for nitrogen assimilation, except nitrate reductase, which could not be detected in this organelle. Glutamate synthase (NADH- and ferredoxin-dependent) and glutamate dehydrogenase were located exclusively in the chloroplast, while for nitrite reductase and glutamine synthetase an extraplastidic activity of about 20 and 60%, respectively, was measured. Cells grown on ammonium, instead of nitrate as nitrogen source, had a higher total cellular activity of the NADH-dependent glutamate synthase (+95%) and glutamate dehydrogenase (+33%) but less activity of glutamine synthetase (−10%). No activity of nitrate reductase could be detected in ammonium-grown cells. The distribution of nitrogen-assimilating enzymes among the chloroplast and the rest of the cell did not differ significantly between nitrate-grown and ammonium-grown cells. Only the plastidic portion of the glutamine synthetase increased to about 80% in cells grown on ammonium (compared to about 40% in cells grown on nitrate).  相似文献   

6.
Ferredoxin-dependent glutamate synthase (EC 1.4.7.1) and NADH-dependent glutamate synthase (EC 1.4.1.14) have been identified in the plant cells of soybean nodules. Ferredoxin-dependent glutamate synthase is 2-fold more active than NADH-dependent enzyme in vitro. Ferredoxin-dependent glutamate synthase cross-reacts with IgG against ferredoxin-dependent glutamate synthase of rice green leaves, whereas NADH-dependent glutamate synthase does not recognize the IgG, indicating that there are two distinct enzyme proteins. Ferredoxin-dependent glutamate synthase is composed of polypeptide chain(s) of 165 kDa and has a high affinity to spinach leaf ferredoxin as an electron carrier.  相似文献   

7.
Activities of ammonium assimilating enzymes glutamate dehydrogenase (GDH), glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) as well as the amino acid content were higher in nodules compared to roots. Their activities increased at 40 and 60 d after sowing, with a peak at 90 d, a time of maximum nitrogenase activity. The GS/GOGAT ratio had a positive correlation with the amino acid content in nodules. Higher activities of AST than ALT may be due to lower glutamine and higher asparagine content in xylem. The data indicated that glutamine synthetase and glutamate synthase function as the main route for the assimilation of fixed N, while NADH-dependent glutamate dehydrogenase may function at higher NH4 + concentration in young and senescing nodules. Enzyme activities in lentil roots reflected a capacity to assimilate N for making the amino acids they may need for both growth and export to upper parts of the plant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Suzuki A  Audet C  Oaks A 《Plant physiology》1987,84(3):578-581
The ferredoxin (Fd)-dependent glutamate synthase (EC 1.4.7.1) and NADH-dependent glutamate synthase (EC 1.4.1.14) activities are carried out by two immunochemically distinct enzyme proteins in maize leaves (Zea mays W64A and W182E). Continuous irradiation of etiolated tissue at 75 micro einsteins per square meter per second for 24 hours resulted in a 3-fold increase on a fresh weight basis in the activity of the Fd-dependent glutamate synthase and a slight decrease in the activity of the NADH-dependent enzyme. There was also a significant increase of the Fd-glutamate synthase protein during greening of etiolated tissue.  相似文献   

9.
Neurospora crassa wild-type is almost unable to grow on glutamine as sole nitrogen and carbon source but a GDH-; GS +/- double mutant strain, lacking NADP-dependent glutamate dehydrogenase and partially lacking glutamine synthetase did grow. Under these conditions, the double mutant had a higher chemical energy content than the wild-type. Enzyme assays and labelling experiments with glutamine indicated that in the double mutant glutamine was degraded to ammonium and to carbon skeletons by glutamate synthase, the catabolic (NADH-dependent) glutamate dehydrogenase and the glutamine transaminase-omega-amidase pathway.  相似文献   

10.
Moore R  Black CC 《Plant physiology》1979,64(2):309-313
Nitrogen assimilation in crabgrass Digitaria sanguinalis (L.) Scop., was studied by comparing leaf extracts with isolated mesophyll cell and bundle sheath strand extracts. The results show that both nitrate and nitrate reductase are localized in mesophyll cells; glutamine synthetase is nearly equally distributed in the mesophyll and bundle sheath; approximately 67% of the glutamate synthase activity is in the bundle sheath and 33% is in the mesophyll; and 80% of the glutamate dehydrogenase activity is in the bundle sheath, with the NADH-dependent form exhibiting a 2.5-fold higher activity than the NADPH-dependent form.  相似文献   

11.
B. Dahlbender  D. Strack 《Planta》1986,169(3):382-392
The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GDH glutamate dehydrogenase - GOGAT glutamate synthase (glutamine: 2-oxoglutarate aminotransferase) - GOT aspartate aminotransferase (glutamate: oxaloacetate transaminase) - GS glutamine synthetase - HPLC high-performance liquid chromatography - MCF extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol. - MDH malate dehydrogenase - MSO L-methionine, sulfoximine - PEPCase phosphoenolpyruvate carboxylase - TLC thin-layer chromatography  相似文献   

12.
Bacillus megaterium N.C.T.C. no. 10342 exhibits glutamate synthetase (EC 2.6.1.53) and glutamate dehydrogenase (EC 1.4.1.4) activities. Concentrations of glutamate synthase were high when the bacteria were grown on 3mM-NH4Cl and low when they were grown on 100mM-NH4Cl, whereas glutamate dehydrogenase concentrations were higher when the bacteria were grown on 100mM-NH4Cl than on 3mM-NH4Cl. Glutamate synthase and glutamate dehydrogenase were purified to homogeneity from B. megaterium grown in 10mM-glucose/10mM-NH4Cl. The purified enzymes had mol.wts. 840000 and 270000 for glutamate synthase and glutamate dehydrogenase respectively. The Km values for substrates with NADPH and coenzyme were (glutamate synthase activity shown first) 9 micron and 360 micron for 2-oxoglutarate, 7.1 micron and 8.7 micron for NADPH, and 0.2 mM for glutamine and 22 mM for NH4Cl, similar values to those of enzymes from Escherichia coli. Glutamate synthase contained NH3-dependent activity (different from authentic glutamate dehydrogenase), which was enhanced 4-fold during treatment at pH 4.6 NH3-dependent activity was generally about 2% of the glutamine-dependent activity. Amidination of glutamate synthase by the bi-functional cross-linking reagent dimethyl suberimidate inactivated glutamine-dependent glutamate synthase activity, but increased NH3-dependent activity. A cross-linked structure of mol.wt. approx 200000 was the main product formed.  相似文献   

13.
ABSTRACT. Free-living soil amoebae consume a wide variety of food, including algae, yeast, small protozoa and especially bacteria, which they digest to fulfil their nutritional requirements. Amoebae play an active role in the nitrogen mineralization in soils due to their nitrogen metabolizing capacities. However, little is known about nitrogen metabolizing enzyme activities in these free-living soil amoebae. In this study a number of key enzymes involved in the nitrogen metabolism of the axeaically cultivated free-living soil amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga and two different strains of Hartmannella vermiformis were determined. the specific enzyme activities for exponential growth phase ceils were calculated and it appeared that the species tested possessed urate oxidase, glutamine synthetase, NADH-dependent glutamate dehydrogenase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activity. Glutamate synthase activity could not be detected in any of these species. the levels of specific activities varied depending on the enzymes tested. For all species the highest activities were detected for the transaminase reactions yielding glutamate, and for glutamate dehydrogenase. A general conclusion is that the pathway of nitrogen assimilation in free-living soil amoebae is similar to the one observed for other eukaryotes. Differences in specific activities were detected between the species.  相似文献   

14.
Inorganic nitrogen metabolism in the obligate anaerobic thermophiles Chlostridium thermosaccharolyticum and Clostridium thermoautotrophicum differs in several respects. C. thermosaccharolyticum contains a nitrogenase as inferred from NH 4 + repressible C2H2 reduction, a glutamine synthetase which is partially repressed by ammonium, very labile glutamate synthase activities with both NADH and NADPH, NADPH-dependent glutamate dehydrogenase, and NH 4 + -dependent asparagine synthetase. C. thermoautotrophicum contains no nitrogenase, but glutamine synthetase, no glutamate synthase, no glutamate dehydrogenase, but a NADH-dependent alanine dehydrogenase and a NH 4 + -dependent asparagine synthetase.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase amidotransferase (glutamate synthase)  相似文献   

15.
NaCl effects on proline metabolism in rice (Oryza sativa) seedlings   总被引:10,自引:0,他引:10  
Salt-stress effects on osmotic adjustment, ion and proline concentrations as well as proline metabolizing enzyme activities were studied in two rice ( Oryza sativa L.) cultivars differing in salinity resistance: I Kong Pao (IKP; salt-sensitive) and Nona Bokra (salt-resistant). The salt-sensitive cultivar exposed to 50 and 100 m M NaCl in nutritive solution for 3 and 10 days accumulated higher levels of sodium and proline than the salt-resistant cultivar and displayed lower levels of osmotic adjustment. Proline accumulation was not related to proteolysis and could not be explained by stress-induced modifications in Δ1-pyrroline-5-carboxylate reductase (P5CR; EC 1.5.1.2) or proline dehydrogenase (PDH; EC 1.5.1.2) activities recorded in vitro. The extracted ornithine Δ -aminotransferase (OAT; EC 2.6.1.13) activity was increased by salt stress in the salt-sensitive cultivar only. In both genotypes, salt stress induced an increase in the aminating activity of root glutamate dehydrogenase (GDH; EC 1.4.1.2) while deaminating activity was reduced in the leaves of the salt-sensitive cultivar. The total extracted glutamine synthetase activity (GS; EC 6.3.1.2) was reduced in response to salinity but NaCl had contrasting effects on GS1 and GS2 isoforms in salt-sensitive IKP. Salinity increased the activity of ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) extracted from leaves of both genotypes and increased the activity of NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in the salt-sensitive cultivar. It is suggested that proline accumulation is a symptom of salt-stress injury in rice and that its accumulation in salt-sensitive plants results from an increase in OAT activity and an increase in the endogenous pool of its precursor glutamate. The physiological significance of the recorded changes are analyzed in relation to the functions of these enzymes in plant metabolism.  相似文献   

16.
The two isoenzymes of NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14), previously identified in root nodules of Phaseolus vulgaris L., have both been shown to be located in root-nodule plastids. The nodule specific NADH-GOGAT II accounts for the majority of the activity in root nodules, and is present almost exclusively in the central tissue of the nodule. However about 20% of NADH-GOGAT I activity is present in the nodule cortex, at about the same specific activity as this isoenzyme is found in the central tissue. Glutamine synthetase (GS; EC 6.3.1.2) occurs predominantly as the polypeptide in the central tissue, whereas in the cortex, the enzyme is represented mainly by the polypeptide. Over 90% of both GS and NADH-GOGAT activities are located in the central tissue of the nodule and GS activity exceeds NADH-GOGAT activity by about twofold in this region. Using the above information, a model for the subcellular location and stoichiometry of nitrogen metabolism in the central tissue of P. vulgaris root nodules is presented.Abbreviations Fd-GOGAT ferredoxin-dependent glutamate synthase - GOGAT glutamate synthase - GS glutamine synthetase - NADH-GOGAT NADH-dependent glutamate synthase - IEX-HPLC ion-exchange high-performance liquid chromatography  相似文献   

17.
Kenneth W. Joy 《Phytochemistry》1973,12(5):1031-1040
-Glutamate dehydrogenase (GDH) was found in soluble and particulate (mitochondrial) fractions of pea roots. The activity of NADH-dependent GDH in fresh mitochondrial extract was increased about 10-fold by addition of zinc, manganese or calcium, but high concentrations of zinc were inhibitory. During storage, GDH activity of the mitochondrial extract slowly increased. The NADH activity was inhibited by citrate and other chelating agents. NADH-dependent reductive amination was also inhibited by glutamate, the product of the reaction; by contrast NADPH dependent activity was relatively unaffected by zinc, chelating agents or glutamate. Sensitivity (of NADH-GDH) to glutamate was lost on purification, but was restored when the enzyme was immobilized by binding to an insoluble support (AE cellulose). Glutamate appears to change the affinity of the enzyme for 2-oxoglutarate.  相似文献   

18.
不同耐盐性水稻幼苗根氨同化酶对盐胁迫的反应   总被引:3,自引:0,他引:3  
在盐胁迫下,检测了耐盐性不同的水稻(Oryza sativa L.)品种根部氨同化酶及其相关参数的变化。结果表明,根的可溶性蛋白、谷氨酰胺合成酶(GS)及依赖于NADH的谷氨酸合酶(NADH-GOGAT)活性在高盐浓度下不同程度地降低,其影响大小依次为早花二号(盐敏感品种)、金珠一号(正常栽培品种)、津稻779(耐盐品种),与其耐盐性相一致。在盐胁迫条件下,在耐盐性较高的水稻品种中, GS和GOGAT活性比盐敏感品种高,NH4 浓度维持在较低的水平。Native-PAGE和活性染色结果表明,GSrb更容易受到外界环境的影响。在高浓度盐的胁迫下,早花二号、金珠一号的依赖于NADH的谷氨酸脱氢酶(NADH-GDH)活性都有较显著的升高,津稻779却无明显的变化,这和NH4 含量的变化相一致。盐不同程度地导致可溶性糖(TSS)在金珠一号和津稻779根部积累,而在早花2号的根部,可溶性糖的水平则随盐浓度的不同而表现出不同的变化。在所检测的品种中,脯氨酸的含量均有不同程度的升高,但在高盐浓度下,盐敏感品种的含量较低。这些结果提示,不同的水稻品种对盐胁迫的敏感程度与该品种GS以及GOGAT活性的高低有关。  相似文献   

19.
Pathways of ammonia assimilation into glutamic acid in Bacillus azotofixans, a recently characterized nitrogen-fixing species of Bacillus, were investigated through observation by NMR spectroscopy of in vivo incorporation of 15N into glutamine and glutamic acid in the absence and presence of inhibitors of ammonia-assimilating enzymes, in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthase, and alanine dehydrogenase. In ammonia-grown cells, both the glutamine synthetase/glutamate synthase and the glutamate dehydrogenase pathways contribute to the assimilation of ammonia into glutamic acid. In nitrate-grown and nitrogen-fixing cells, the glutamine synthetase/glutamate synthase pathway was found to be predominant. NADPH-dependent glutamate dehydrogenase activity was detectable at low levels only in ammonia-grown and glutamate-grown cells. Thus, B. azotofixans differs from Bacillus polymyxa and Bacillus macerans, but resembles other N2-fixing prokaryotes studied previously, as to the pathway of ammonia assimilation during ammonia limitation. Implications of the results for an emerging pattern of ammonia assimilation by alternative pathways among nitrogen-fixing prokaryotes are discussed, as well as the utility of 15N NMR for measuring in vivo glutamate synthase activity in the cell.  相似文献   

20.
不同耐盐性水稻幼苗根氨同化酶对盐胁迫的反应   总被引:1,自引:0,他引:1  
在盐胁迫下,检测了耐盐性不同的水稻(Oryza sativa L.)品种根部氨同化酶及其相关参数的变化.结果表明,根的可溶性蛋白、谷氨酰胺合成酶(GS)及依赖于NADH的谷氨酸合酶(NADH-GOGAT)活性在高盐浓度下不同程度地降低,其影响大小依次为早花二号(盐敏感品种)、金珠一号(正常栽培品种)、津稻779(耐盐品种),与其耐盐性相一致.在盐胁迫条件下,在耐盐性较高的水稻品种中,GS和GOGAT活性比盐敏感品种高,NH4 浓度维持在较低的水平.Native-PAGE和活性染色结果表明,GSrb更容易受到外界环境的影响.在高浓度盐的胁迫下,早花二号、金珠一号的依赖于NADH的谷氨酸脱氢酶(AADH-GDH)活性都有较显著的升高,津稻779却无明显的变化,这和NH4 含量的变化相一致.盐不同程度地导致可溶性糖(TSS)在金珠一号和津稻779根部积累,而在早花2号的根部,可溶性糖的水平则随盐浓度的不同而表现出不同的变化.在所检测的品种中,脯氨酸的含量均有不同程度的升高,但在高盐浓度下,盐敏感品种的含量较低.这些结果提示,不同的水稻品种对盐胁迫的敏感程度与该品种GS以及GOGAT活性的高低有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号