首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Z  Qiu F  Liu Y  Ma K  Li Z  Xu S 《Plant cell reports》2008,27(12):1851-1860
In vivo haploid production induced by inducer lines derived from Stock 6 is widely used in breeding program of maize (Zea mays L.), but the mechanisms behind have not yet been fully understood. In this study, average frequency of haploid induction in four inbred lines by Stock 6-derived inducer line HZI1 was above 10%. About 0.2% kernels from the cross Hua24 x HZI1 had mosaic endosperm showing yellow shrunken parts from Hua24 to normal parts with purple aleurone from HZI1. Individual lagged chromosomes and micronuclei were observed in mitotic cells of ovules pollinated by HZI1. Above 56.4% of the radicles from the kernels with purple aleurone and colorless embryos were mixoploid (2n = 9-21), and more than 45.22% cells were haploid cells (2n = 10) in three crosses. More than 62.5% of the radicles from the kernels with purple aleurone and purple embryos were mixoploid (2n = 9-21) having 54.27% cells with 2n = 20. SSR analysis showed that all haploids from the cross Hua24 x HZI1 shared the same genomic compositions as Hua24 except for plants Nos. 862 and 857 with some polymorphic DNA bands. The results revealed that chromosome elimination after fertilization caused the haploid production in maize.  相似文献   

2.
Bongiorni S  Prantera G 《Genetica》2003,117(2-3):271-279
In lecanoid Coccids, or mealybugs, the male development is accompanied by the facultative heterochromatization of the entire, paternally derived, haploid chromosome set. This epigenetic phenomenon occurs in all the cells of mid-cleavage male embryos. Consequently, the Coccid chromosome system offers a powerful tool for gaining insights into the structure of facultative heterochromatin, and into the epigenetic mechanisms of its imprinted, developmentally regulated formation. This paper will present new data and summarize recent studies on genomic imprinting and facultative heterochromatization in mealybugs. First, the existence and the possible role of DNA methylation as an epigenetic modification that fulfills the requisites of the imprinting process in mealybugs will be considered. The second part of this paper will focus on proteins involved in the facultative heterochromatization process. In particular, the involvement of an HP-1-like protein in the silencing of the paternally derived haploid chromosome set and its interaction with the lysine 9 methylated isoform of histone H3 will be discussed.  相似文献   

3.
Evolution of karyotype in haploid cell lines of Drosophila melanogaster   总被引:2,自引:0,他引:2  
Seven continuous cell lines have been established in vitro from lethal embryos produced by the female sterile mutant mh 1182 of Drosophila melanogaster. Six lines show haploid metaphases. Karyotype analysis revealed a high level of aneuploid cells with frequent chromosome fragments. In three lines, haploid cells were quickly overgrown by diploid cells. Two lines were more stable but the proportion of haploid cells decreased with time. One line was stable, showing 80-90% of haploid cells for over 1 000 cell generations. Stable haploid clones have been isolated from two lines. Crossing of mh 1182/mh 1182 females with males bearing a ring X chromosome shows that the haploid genome retained in the cells is of maternal origin and that the diploid cells derive from pre-existing haploid cells. The appearance of the diploid cells and the conditions of karyotypic stability are analysed.  相似文献   

4.
Chromosomal normality and sex were diagnosed in each blastomere of bovine embryos derived from in vitro fertilization (IVF). Bovine embryos developing to the 5- to 10-cell stage were separated into individual blastomeres with 0.5% protease. After treatment with 100 ng/mL vinblastine sulfate for 8 to 10 h, they were prepared for chromosome samples. In total, 33 bovine embryos and 185 blastomeres were examined. Chromosomal normality was analyzed in 43.8% (81/185) of the blastomeres and 60.6% (20/33) of the embryos; while chromosomal anomalies were found in 16 (80%, 16/20) of the embryos, 5 haploid embryos and 11 mosaic (n/2n) embryos. Mosaicism characteristic of the opposite sex in X-and Y-chromosomes was found in 2 haploid embryos, and that of a Y-chromosome and of XX chromosomes in 1 n/2n embryo. Various sex-chromosome compositions were also observed in the other 10 chromosomal mosaic n/2n embryos.  相似文献   

5.
Two mosaic sibling embryos of the Australian plague locust, Chortoicetes terminifera are reported with haploid and diploid cell lines in widely differing proportions. One small chromosome pair involved in the two cases has alternative morphology and a B-chromosome is present in one. In addition, G-banding identifies two medium-sized chromosome pairs and alternative states of a second small pair. Using these markers it is clear that both diploid cell lines are homozygous for the chromosomes of the corresponding haploid line. These embryos have thus developed by accidental parthenogenesis from haploid cells, some of which were duplicated by endomitosis after development began.  相似文献   

6.
Mammalian haploid cell lines provide useful tools for both genetic studies and transgenic animal production. To derive porcine haploid cells, three sets of experiments were conducted. First, genomes of blastomeres from 8-cell to 16-cell porcine parthenogenetically activated (PA) embryos were examined by chromosome spread analysis. An intact haploid genome was maintained by 48.15% of blastomeres. Based on this result, two major approaches for amplifying the haploid cell population were tested. First, embryonic stem-like (ES-like) cells were cultured from PA blastocyst stage embryos, and second, fetal fibroblasts from implanted day 30 PA fetuses were cultured. A total of six ES-like cell lines were derived from PA blastocysts. No chromosome spread with exactly 19 chromosomes (the normal haploid complement) was found. Four cell lines showed a tendency to develop to polyploidy (more than 38 chromosomes). The karyotypes of the fetal fibroblasts showed different abnormalities. Cells with 19–38 chromosomes were the predominant karyotype (59.48–60.91%). The diploid cells were the second most observed karyotype (16.17%–22.73%). Although a low percentage (3.45–8.33%) of cells with 19 chromosomes were detected in 18.52% of the fetus-derived cell lines, these cells were not authentic haploid cells since they exhibited random losses or gains of some chromosomes. The haploid fibroblasts were not efficiently enriched via flow cytometry sorting. On the contrary, the diploid cells were efficiently enriched. The enriched parthenogenetic diploid cells showed normal karyotypes and expressed paternally imprinted genes at extremely low levels. We concluded that only a limited number of authentic haploid cells could be obtained from porcine cleavage-stage parthenogenetic embryos. Unlike mouse, the karyotype of porcine PA embryo-derived haploid cells is not stable, long-term culture of parthenogenetic embryos, either in vivo or in vitro, resulted in abnormal karyotypes. The porcine PA embryo-derived diploid fibroblasts enriched from sorting might be candidate cells for paternally imprinted gene research.  相似文献   

7.
Dr. Uzi Nur 《Chromosoma》1963,14(2):123-139
Summary Meiotic parthenogenesis of a type not previously described was found in Pulvinaria hydrangeae Steinweden. During diakinesis 8 bivalents were formed. At prometaphase the spindle was tripolar but anaphase I was bipolar and normal. After completion of division of the primary oocyte, the following sequence occurred: 1. polar body I divided, usually into 3 products; 2. the secondary oocyte divided to yield the egg pronucleus and polar body II; 3. the egg pronucleus divided into its two haploid products; and 4. the second polar body divided. The products of the egg pronucleus fused while dividing to restore the diploid chromosome number; this division may be equated to the first cleavage division. The products of the polar bodies did not take part in the formation of the embryo proper or the mycetocytes.Among the embryos produced by females of two out of the three populations studied some of the embryos showed a heterochromatic chromosome set, characteristic of males in this and related families. The reproductive system of the females as well as the eggs did not contain any sperm; thus the male embryos were apparently produced parthenogenetically.The euchromatic and heterochromatic chromosome sets were genetically identical, since they both originated from the egg pronucleus by mitosis. The heterochromatization of one set but not the other might be due in part to a previous difference in their position in the cytoplasm.The females were completely homozygous yet they produced male and female embryos. Thus it appears that sex determination in the group does not depend on the segregation of genetic factors in either males or females.In addition to male and female embryos, three types of degenerating embryos were observed. It is believed that these embryos were formed by polyploid somatic cells which invaded abnormal eggs and embryos and took over development.  相似文献   

8.
王玉玲 《昆虫知识》2009,46(3):460-462
以商丘地区的铺道蚁Tetramorium caespitum(L.)早期胚胎为材料,采用低渗处理—烘干法制备染色体标本,对其染色体组型进行研究。结果表明,铺道蚁染色体组型为n=22,2n=44,是由10条中央着丝粒染色体,3条亚中着丝粒染色体和9条亚端着丝粒染色体组成。  相似文献   

9.
The behavior of chromosomes during development of the mealybug Planococcus citri provides one of the most dramatic examples of facultative heterochromatization. In male embryos, the entire haploid paternal chromosome set becomes heterochromatic at mid-cleavage. Male mealybugs are thus functionally haploid, owing to heterochromatization (parahaploidy). To understand the mechanisms underlying facultative heterochromatization in male mealybugs, we have investigated the possible involvement of an HP-1-like protein in this process. HP-1 is a conserved, nonhistone chromosomal protein with a proposed role in heterochromatinization in other species. It was first identified in Drosophila melanogaster as a protein enriched in the constitutive heterochromatin of polytene chromosome. Using a monoclonal antibody raised against the Drosophila HP-1 in immunoblot and immunocytological experiments, we provide evidence for the presence of an HP-1-like in Planococcus citri males and females. In males, the HP-1-like protein is preferentially associated with the male-specific heterochromatin. In the developing male embryos, its appearance precedes the onset of heterochromatization. In females, the HP-1-like protein displays a scattered but reproducible localization pattern along chromosomes. The results indicate a role for an HP-1-like protein in the facultative heterochromatization process.  相似文献   

10.
We have developed improved procedures for recovery of haploid and doubled haploid (DH) melon plants, using hybrids derived from crosses of lines with multiple virus resistance. Seeds formed after pollination with irradiated pollen were cultured in liquid medium for 10 days before excision of the embryos for further culture. This made it easier to identify the seeds containing parthenogenetic embryos, thereby reducing the effort required and increasing the percentage of plants recovered. The plants obtained (approximately 175) were transferred to a greenhouse for evaluation. Three fertile lines were identified, and selfed seeds were obtained for evaluating virus resistance. Flow cytometry of leaf tissues showed that two of these lines were spontaneous DH and the third was a mixoploid containing haploid and diploid cells. The other plants remained sterile through the flowering stage. Flow cytometry of 20 sterile plants showed that all were haploid. Attempts to induce chromosome doubling by applying colchicine to greenhouse-grown plants were unsuccessful. Shoot tips from the haploid plants were used to establish new in vitro cultures. In vitro treatment of 167 micropropagated haploid shoots with colchicine produced 10 diploid plants as well as 100 mixoploid plants. Pollen from male flowers that formed in vitro on the colchicine-treated plants was examined. High percentages of viable pollen that stained with acetocarmine were found not only in the diploids but also in >60% of the plants scored as mixoploid or haploid by flow cytometry. Efficient recovery of DH from hybrid melon lines carrying combinations of important horticultural traits will be a valuable tool for melon breeders.  相似文献   

11.
以冬性四倍体硬粒小麦(Triticum durum,2n=28,AABB)为母本与粗山羊草(Aegilops tauschii,2n=14,DD)杂交,得到的单倍体幼胚(n=21,ABD)经组织培养拯救,获得的幼苗经染色体加倍而成为合成小麦(AABBDD)。从中鉴定、筛选出冬性的合成小麦。幼胚仅在1/2 MS培养基上培养,成苗率为75.81%;根据幼胚的发育状态,将发育较完善的幼胚直接接种在1/2 MS培养基上,将发育不良的幼胚先接种于1/2 MS+2 mg/L 2,4-D培养基上进一步养育幼胚,之后视幼胚发育状况再将其转入1/2 MS培养基中培养成苗,此方法的成苗率为92.44%,较前者的成苗率提高了16.63%。染色体加倍在冬季塑膜拱棚内用0.05%秋水仙素进行半根法处理,较容易获得健壮苗,并且分蘖多。  相似文献   

12.
Three embryos of Locusta migratoria are described which are mosaics of haploid and diploid cells. The chromosome constitution of the diploid cells discounts the possibility of a parthenogenetic origin. Polyspermy or polar body activation appear to be the most likely mechanisms of production.  相似文献   

13.
泥鳅雄核发育纯合二倍体的产生   总被引:10,自引:0,他引:10  
刘汉勤  易泳兰  陈宏溪 《水生生物学报》1987,11(3):241-246,i005
以机械方法挑去泥鳅(Misgurnus anguillicaudatus)×大鳞副泥鳅(Paramisgurnus dabryanus)(♀)属间杂交受精卵的雌核,得到泥鳅雄核发育单倍体胚胎。将这种单倍体胚胎的囊胚细胞核移植到大鳞副泥鳅去核卵中,获得了243个原肠胚胎,其染色体鉴定表明,29.6%的核移植体的染色体发生了加倍。在另一实验组中,从769个核移植卵得到了5尾2cm以上的个体。尾鳍染色体鉴定、肌肉LDH同工酶电泳和形态鉴别表明,这5尾核移植体为泥鳅雄核发育纯合二倍体。  相似文献   

14.
Parthenogenetic sporophytes were obtained from three strains of Laminaria japonica Areschoug. These sporophytes grew to maturity in the sea, producine spores that all grew into female gametophytes. These female gametophytes gave rise to another generation of parthenogenetic sporophytes during the next year, so that by the year 1990 parthenogenetic sporophytes had been cultivated for 12, 9, and 7 generations, respectively, for the three strains. When female gametophytes from parthenogenetic sporophytes were combined with normal male gametophytes, normal sporophytes that reproduced and gave rise to both female and male gametophytes were obtained. The parthenogenetic sporophytes were shorter and narrower than the normal sporophytes of the same strain. Chromosome counts on mature sporophytes showed that normal sporophytes (from fertilized eggs) were diploid (2n = approximately 40) and that the spores they produced were haploid (n = approximately 20), while nuclei from both somatic and sporangial cells in parthenogenetic sporophytes were haploid. All gametophytes were haploid. Young sporophytes derived from cultures with both female and male gametophytes were diploid, while young, sporophytes obtained from female gametophytes from parthenogenetic sporophytes had haploid, diploid, or polyploidy chromosome numbers. Polyploidy was associated with abnormal cell shapes. The presence of haploid parthenogenetic sporophytes should be use in breeding kelp strains with useful characteristics, since the sporophyte phenotype is expressed from a haploid genotype which can be more readily selected.  相似文献   

15.
maternal haploid (mh) is a strict maternal effect mutation that causes the production of haploid gynogenetic embryos (eggs are fertilized but only maternal chromosomes participate in development). We conducted a cytological analysis of fertilization and early development in mh eggs to elucidate the mechanism of paternal chromosome elimination. In mh eggs, as in wild-type eggs, male and female pronuclei migrate and appose, the first mitotic spindle forms, and both parental sets of chromosomes congress on the metaphase plate. In contrast to control eggs, mh paternal sister chromatids fail to separate in anaphase of the first division. As a consequence the paternal chromatin stretches and forms a bridge in telophase. During the first three embryonic divisions, damaged paternal chromosomes are progressively eliminated from the spindles that organize around maternal chromosomes. A majority of mh embryos do not survive the deleterious presence of aneuploid nuclei and rapidly arrest their development. The rest of mh embryos develop as haploid gynogenetic embryos and die before hatching. The mh phenotype is highly reminiscent of the early developmental defects observed in eggs fertilized by ms(3)K81 mutant males and in eggs produced in incompatible crosses of Drosophila harboring the endosymbiont bacteria Wolbachia.  相似文献   

16.
为研究鱼类单倍体血液循环障碍产生机制,人工诱导获得金鱼(Carassius auratus)雌核发育单倍体胚胎并进行活体观察及邻联茴香胺染色,结果显示金鱼雌核发育单倍体胚胎存在不同程度的血液循环不良和红细胞生成缺陷.为进一步探讨其发生的分子机制,利用反义RNA整胚原位杂交技术比较分析了原始造血和血管发生关键基因scl(...  相似文献   

17.
All 10 chromosomes of maize (Zea mays, 2n = 2x = 20) were recovered as single additions to the haploid complement of oat (Avena sativa, 2n = 6x = 42) among F(1) plants generated from crosses involving three different lines of maize to eight different lines of oat. In vitro rescue culture of more than 4,300 immature F(1) embryos resulted in a germination frequency of 11% with recovery of 379 F(1) plantlets (8.7%) of moderately vigorous growth. Some F(1) plants were sectored with distinct chromosome constitutions among tillers of the same plant and also between root and shoot cells. Meiotic restitution facilitated development of un-reduced gametes in the F(1). Self-pollination of these partially fertile F(1) plants resulted in disomic additions (2n = 6x + 2 = 44) for maize chromosomes 1, 2, 3, 4, 6, 7, and 9. Maize chromosome 8 was recovered as a monosomic addition (2n = 6x + 1 = 43). Monosomic additions for maize chromosomes 5 and 10 to a haploid complement of oat (n = 3x + 1 = 22) were recovered several times among the F(1) plants. Although partially fertile, these chromosome 5 and 10 addition plants have not yet transmitted the added maize chromosome to F(2) offspring. We discuss the development and general utility of this set of oat-maize addition lines as a novel tool for maize genomics and genetics.  相似文献   

18.
In pseudo-arrhenotokous mites, haploid males develop from fertilized eggs that undergo paternal genome loss (PGL) during early embryogenesis. We present evidence that some of the paternal genome may be retained in males of the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Two reproductively compatible populations were differentiated by two random amplified polymorphic DNA markers and the inheritance pattern in the offspring was analysed. Maternal transmission rates are variable and independent of the sex of the offspring and of the marker. These data suggest a nuclear origin and independent segregation of the markers. One marker (330 base pairs (bp)) was paternally transmitted to male as well as female offspring, the other (990 bp) was paternally transmitted to all females and some of the male offspring. We propose that the paternal set of inactivated chromosomes may be partially retained in some tissues of the haploid males or, alternatively, that a B chromosome does not follow the process of PGL in male embryos, thereby segregating with the maternal set. The possible mechanisms controlling the condensation and the segregation of the chromosome(s) retained are discussed on the basis of current hypotheses on chromosome inactivation in insects.  相似文献   

19.
The objective of this study is to induce the nuclear DNA duplication of anther-derived embryos of cork oak (Quercus suber L.) to obtain doubled-haploid plants. Anther culture of this species produces a low percentage (7.78%) of spontaneous diploids, as assessed by flow cytometry. Therefore, three antimitotic agents, colchicine, oryzalin and amiprophos-methyl (APM), were applied in vitro to anther-derived cork oak haploid embryos from six genotypes at different concentrations and for different treatment durations. Antimitotic toxicity was determined by embryo survival. Efficiency in inducing chromosome doubling of haploid embryos was evaluated by flow cytometry measurements and differences were observed between treatments. Nuclear DNA duplication and embryo survival of cork oak haploid embryos was most efficiently induced with oryzalin 0.01 mM for 48 h. Around 50% diploid embryos were obtained. The rate of chromosome duplication induced by APM 0.01 mM was also acceptable but lower than that induced by oryzalin, regardless of the duration of the treatment. Colchicine 1.3 or 8.8 mM was the least efficient, with the induction of necrosis and only a small rate of nuclear DNA duplication.  相似文献   

20.
Light and electron microscopic evidence is provided to describe a new example of a postzygotic sex-determination system in two collembolan species, Bourletiella arvalis and B. hortensis. In B. arvalis, where chromosome number could be assessed, both sexes are homogametic (n=6) and all zygotes have an identical chromosome composition (2n=12). However, male embryos develop after the loss of two sex chromosomes, making the male genotype 2n=10 (4AAX10X20). On the other hand, female embryos develop if the zygote retains all chromosomes and the female genetic system is, therefore, 4AAX1X1X2X2 (2n=12). As an apparent consequence of the lack of two chromosomes in the male germ cells, spermatogenesis is aberrant. At the first meiotic division, in fact, the two resulting secondary spermatocytes receive a different number of chromosomes: six and four. The cells which receive six chromosomes (one haploid set of four autosomes and two sex chromosomes) proceed through the meiotic process and the two spermatids generated produce two spermatozoa by a normal spermiogenesis. The cells receiving only four chromosomes do not undergo the second meiotic division and soon degenerate. The degenerating cells can be considered a morphological marker for this process, as they are easily recognizable at the electron microscope from the functional secondary spermatocytes by the appearance of the nucleus (totally condensed), the reduction of the cytoplasm (limited to a thin layer surrounding the nucleus), and the lack of most cytoplasmic organelles (with the exception of a couple of centrioles). Electron microscopic evidence has been collected for both species, allowing to extend the same process to B. hortensis, even if chromosomes could not be counted in this species. Therefore, as a result of the spermatocyte elimination, the efficiency of spermatogenesis is reduced to 50%. This process is identical to that observed in other collembolan species of the suborder Symphypleona, and it is suggested that it represents a synapomorphic feature uniting the families Dicyrtomidae, Sminthuridae and Bourletiellidae (Sminthuriformia). It is also suggested that the process is related with the finding of a distorted sex ratio in natural populations and, possibly, with the evolution of parthenogenesis. This hypothesis is supported by the fact that chromosome pairing and genetic recombination occurs only during female meiosis, while chromosomes do not pair during male meiosis. Accepted: 27 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号