首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsai SK  Lin MJ  Liao PH  Yang CY  Lin SM  Liu SM  Lin RH  Chih CL  Huang SS 《Life sciences》2006,78(23):2758-2762
The effects of caffeic acid phenethyl ester (CAPE), an antioxidant derived from propolis, on the infarct volume elicited by focal cerebral ischemia were studied on Long-Evans rats. Cerebral infarction was induced by microsurgical procedures with ligation of the right middle cerebral artery (MCA) and clipping of bilateral common carotid arteries (CCA) for 60 min. The rats were sacrificed 24 h later and serial brain slices of 2 mm thickness were taken and stained for the measurement of infarct area. CAPE was administered intravenously 15 min before MCA occlusion. Pretreatment of CAPE (0.1, 1 and 10 microg/kg) significantly reduced the total infarct volume from 169.6 +/- 14.5 mm3 (control) to 61.0 +/- 24.1 mm3 (0.1 microg/kg CAPE), 47.4 +/- 9.1 mm3 (1 microg/kg CAPE), and 42.4 +/- 8.7 mm3 (10 microg/kg CAPE), respectively. Plasma nitric oxide (NO) content was significantly increased in rats subjected to focal cerebral ischemia. It is concluded that CAPE possesses neuroprotective properties in focal cerebral ischemia injury in rats possibly through its antioxidant effect and/or via the upregulation of NO production.  相似文献   

2.
The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 μg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 μg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 μg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.  相似文献   

3.
Among antioxidative polyphenols, caffeic acid esters such as caffeic acid phenethyl ester (CAPE) and chlorogenic acid are contained in propolis, vegetables and coffee. In this study, we compared the efficacy of some polyphenols on the activation level of a cytoprotective heme oxygenase-1 (HO-1) gene in RAW264.7 mouse macrophage cells using quantitative real-time RT-PCR. The quantitative study revealed a variety of activation level of HO-1 gene by the chemicals. CAPE and caffeic acid ethyl ester (CAEE) at the final concentration of 2 muM drastically activated the HO-1 gene to 39.2-fold and 20.1-fold, respectively. Curcumin, structurally related with caffeic acid and an element of turmeric, induced the HO-1 gene to 5.8-fold. In contrast, no activation was observed by other caffeic acid esters such as chlorogenic acid and rosmarinic acid. Higher concentrations were necessary for the activation by an antioxidant cysteamine and the electrophile diethyl maleate. Although the inducible activities of CAPE and chlorogenic acid were distinctly different, they showed similar reductive capacities when determined by cyclic voltammetry. These results show that the drastic activation of HO-1 gene by CAPE and CAEE is dependent upon their chemical structures, rather than the reductive activity of polyphenols, possibly reflecting the physiological effects of the nutritional elements.  相似文献   

4.
This study was aimed to investigate the vascular activity of caffeic acid phenethylester (CAPE), one of the major components of honeybee propolis. Experiments were performed on rat thoracic aortic rings, mounted in an isolated organ bath and connected to an isometric force transducer. The effect of CAPE (0.1-300 microM) was evaluated on tissue pre-contracted with phenylephrine (PE, 1 microM) or with KCl (100 mM). In another set of experiments, tissue was incubated with CAPE (1-100 microM) and responses to PE (0.01-3 microM) or KCl (60 mM) were evaluated. The effect of CAPE on cytosolic Ca(2+) concentration in aortic smooth muscle cells stimulated with PE or KCl was also evaluated. CAPE (0.1-300 microM) caused a concentration-dependent relaxation (pEC(50) 4.99 +/- 0.19; Emax 100.75 +/- 1.65%; n = 4) of tissue pre-contracted with PE that was reduced by endothelium removal or by incubation with N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM). CAPE also relaxed KCl-precontracted tissue (pEC(50) 4.40 +/- 0.08; n = 4). CAPE inhibited contractile responses to PE or to KCl, and also inhibited the contractile response to PE obtained in a Ca(2+)-free medium. In addition, CAPE inhibited the increase in cytosolic Ca(2+) concentration triggered by stimulation of aortic smooth muscle cells with PE or KCl. Our results demonstrate a vascular activity for CAPE, that is only partially dependent on nitric oxide. Indeed, at high concentrations, CAPE vasorelaxant effect occurs also in absence of endothelium and it is likely due to an inhibitory effect on calcium movements through cell membranes.  相似文献   

5.
Caffeic acid and some of its derivatives such as caffeic acid phenetyl ester (CAPE) and octyl caffeate are potent antioxidants which present important anti-inflammatory actions. The present study assessed the in vitro and in vivo effects of five caffeic acid derivatives (caffeic acid methyl, ethyl, butyl, octyl and benzyl esters) and compared their actions to those of CAPE. In the model of LPS-induced nitric oxide (NO) production in RAW 264.7 macrophages, the pre-incubation of all derivatives inhibited nitrite accumulation on the supernatant of stimulated cells, with mean IC50 (μM) values of 21.0, 12.0, 8.4, 2.4, 10.7 and 4.80 for methyl, ethyl, butyl, octyl, benzyl and CAPE, respectively. The effects of caffeic acid derivatives seem to be related to the scavenging of NO, as the compounds prevented SNAP-derived nitrite accumulation and decreased iNOS expression. In addition, butyl, octyl and CAPE derivatives significantly inhibited LPS-induced iNOS expression in RAW 264.7 macrophages. Extending the in vitro results, we showed that the pre-treatment of mice with butyl, octyl and CAPE derivatives inhibited carrageenan-induced paw edema and prevented the increase in IL-1β levels in the mouse paw by 30, 24 and 36%, respectively. Butyl, octyl and CAPE derivatives also prevented carrageenan-induced neutrophil influx in the mouse paw by 28, 49 and 31%, respectively. Present results confirm and extend literature data, showing that caffeic acid derivatives exert in vitro and in vivo anti-inflammatory actions, being their actions mediated, at least in part by the scavenging of NO and their ability to modulate iNOS expression and probably that of other inflammatory mediators.  相似文献   

6.
Caffeic acid phenethyl ester (CAPE) is one of the most bioactive compounds of propolis, a resinous substance collected and elaborated by honeybees. A new liquid chromatography-electrospray ionisation tandem mass spectrometric method was developed and validated for its determination in rat plasma and urine, using taxifolin as internal standard. After sample preparation by liquid/liquid extraction with ethyl acetate, chromatographic separations were carried out with an ODS-RP column using a binary mobile phase gradient of acetonitrile in water. Detection was performed using a turboionspray source operated in negative ion mode and by multiple reaction monitoring. The method was validated, showing good selectivity, sensitivity (LOD = 1 ng/ml), linearity (5-1000 ng/ml; r > or = 0.9968), intra- and inter-batch precision and accuracy (< or =14.5%), and recoveries (94-106%) in both plasma and urine. Stability assays have shown that CAPE is rapidly hydrolysed by plasmatic esterases, which are however inhibited by sodium fluoride. The method was applied to the determination of CAPE levels in rat plasma and urine after oral administration, showing that CAPE is rapidly absorbed and excreted in urine both as unmodified molecule and as glucuronide conjugate.  相似文献   

7.
Glutathione S-transferase (GST) and multidrug resistance-associated proteins (MRPs) play major roles in drug resistance in melanoma. In this study, we investigated caffeic acid phenethyl ester (CAPE) as a selective GST inhibitor in the presence of tyrosinase, which is abundant in melanoma cells. Tyrosinase bioactivates CAPE to an o-quinone, which reacts with glutathione to form CAPE-SG conjugate. Our findings indicate that 90% CAPE was metabolized by tyrosinase after a 60-min incubation. LC–MS/MS analyses identified a CAPE-SG conjugate as a major metabolite. In the presence of tyrosinase, CAPE (10–25 μM) showed 70–84% GST inhibition; whereas in the absence of tyrosinase, CAPE did not inhibit GST. CAPE-SG conjugate and CAPE-quinone (25 μM) demonstrated ?85% GST inhibition via reversible and irreversible mechanisms, respectively. Comparing with CDNB and GSH, the non-substrate CAPE acted as a weak, reversible GST inhibitor at concentrations >50 μM. Furthermore, MK-571, a selective MRP inhibitor, and probenecid, a non-selective MRP inhibitor, decrease the IC50 of CAPE (15 μM) by 13% and 21%, apoptotic cell death by 3% and 13%, and mitochondrial membrane potential in human SK-MEL-28 melanoma cells by 10% and 56%, respectively. Moreover, computational docking analyses suggest that CAPE binds to the GST catalytic active site. Caffeic acid, a hydrolyzed product of CAPE, showed a similar GST inhibition in the presence of tyrosinase. Although, as controls, 4-hydroxyanisole and l-tyrosine were metabolized by tyrosinase to form quinones and glutathione conjugates, they exhibited no GST inhibition in the absence and presence of tyrosinase. In conclusion, both CAPE and caffeic acid selectively inhibited GST in the presence of tyrosinase. Our results suggest that intracellularly formed quinones and glutathione conjugates of caffeic acid and CAPE may play major roles in the selective inhibition of GST in SK-MEL-28 melanoma cells. Moreover, the inhibition of MRP enhances CAPE-induced toxicity in the SK-MEL-28 melanoma cells.  相似文献   

8.
A sensitive and specific HPLC-MS/MS method was developed for the analysis of mycophenolic acid glucuronide (MPAG) in incubations with human liver microsomes. Incubation samples were processed by protein precipitation with acetonitrile. MPAG and the internal standard phenolphthalein glucuronide were chromatographed on a C18 Synergi Fusion-RP column (100 mm x 2 mm, 4 microm) using gradient elution with a mixture of 1mM acetic acid in deionized water and 1mM acetic acid in acetonitrile at a flow rate of 0.22 mL/min. The mass spectrometer was operated with negative electrospray ionization and analysis was carried out in the single reaction monitoring (SRM) mode using the mass transitions of m/z 495-->319 and m/z 493-->175 for MPAG and phenolphthalein glucuronide, respectively. The MPAG calibration curve was linear over the concentration range of 1.0-20 microM. The within-day and between-day relative standard deviations ranged from 1.1 to 7.9% and accuracy was within 8%. The simple and reproducible method is suitable for measuring mycophenolic acid glucuronidation in microsomal incubations.  相似文献   

9.
Endotoxins (lipopolysaccharides; LPS) are known to cause multiple organ failure, including myocardial dysfunction. The present study aimed to investigate the mechanism of caffeic acid phenethyl ester (CAPE) protection against LPS-induced cardiac stress. Rats were allocated into three groups; group 1 served as a normal control group, group 2 (LPS) received a single intraperitoneal injection of LPS (10 mg/kg), group 3 (LPS + CAPE) was injected intraperitoneally with CAPE (10 mg/kg/day; solubilized in saline containing 20% tween 20) throughout a period of 10 days prior to LPS injection. Rats were maintained 4 h before sacrifice. Caffeic acid phenethyl ester pretreatment normalized LPS-enhanced activities of serum creatine kinase (CK) and lactate dehydrogenase (LDH) as well as glutathione peroxidase (GPx), and myeloperoxidase (MPO) in cardiac tissue. A significant reduction of the elevated levels of serum tumor necrosis factor-alpha (TNF-α) as well as serum and cardiac nitrite/nitrate (NOx) ) was achieved after CAPE pretreatment. CAPE also restored malondialdelyde (MDA), reduced glutathione (GSH), and cytosolic calcium (Ca2+ ) levels in the heart. A marked induction of cardiac heme oxygenase-1 (HO-1) protein level was detected in CAPE-pretreated group. Whereas, LPS-induced reduction of adenosine triphosphate (ATP) and phosphocreatine (PCr) levels was insignificantly changed. Conclusively, the early treatment with CAPE maintained antioxidant defences, reduced oxidative injury, cytokine damage, and inflammation but did not markedly improve energy status in cardiac tissue. The beneficial effect of CAPE might be mediated, at least in part, by the superinduction of HO-1.  相似文献   

10.
Methotrexate (MTX), a folic acid antagonist, is widely used as a cytotoxic chemotherapeutic agent. MTX-associated neurotoxicity is an important clinical problem. The aim of this study was to investigate the role of caffeic acid phenethyl ester (CAPE) on cerebellar oxidative stress induced by MTX in rats. A total of 19 adult male rats were divided into three experimental groups as follows: MTX group (MTX treated), MTX+CAPE group (MTX+CAPE treated), and control group. MTX was administered intraperitoneally (i.p.) with a single dose of 20 mg kg−1 on the second day of experiment. CAPE was administered i.p. with a dose of 10 μmol kg−1 day−1 for 7 days. Malondialdehyde (MDA) levels and activities of superoxide dismutase (SOD) and catalase (CAT) were determined in cerebellar tissue of rats. MTX caused to significant increase in MDA levels (an important marker of lipid peroxidation) in the MTX group compared with the controls (p = 0.006). CAPE significantly reduced the MTX induced lipid peroxidation in the MTX+CAPE group compared to the MTX (p = 0.007). The activities of SOD and CAT were significantly increased in the MTX group when compared with the control group (p = 0.0001, p = 0.004, respectively). The increased activities of these enzymes were significantly reduced by CAPE treatment (p = 0.004, p = 0.034, respectively). As a result, CAPE may protect from oxidative damage caused by MTX treatment in rat cerebellum.  相似文献   

11.
This study investigated the anti-osteoclastic effect of caffeic acid phenethyl ester (CAPE) through suppression of Nox1-mediated superoxide anions production. The multi-nucleated cells were counted and followed by measuring their tartrate-resistant acid phosphatase (TRAP) activity. The superoxide anion production was determined by using fluorescent probe dihydroethidium (DHE). After one day of exposure to the receptor activator of nuclear factor-κB ligand (RANKL), the expression of the proteins involved in superoxide anion production was determined by western blotting. A potent anti-osteoclastic effect of CAPE was observed; the superoxide anion level reached a maximum value after one day of incubation. CAPE attenuated the expression of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) and Rac1, and mitigated the RANKL-induced translocation of p47phox to the cell membrane. In addition, CAPE suppressed the expression of nuclear factor-kappa B (NF-κB p65), its translocation to the nucleus, and the activation of NF-κB inhibitor (IκBα) and its kinase (IKKβ). Furthermore, CAPE diminished the expression and activation of the c-jun N-terminal kinase (JNK) and the expression of protein-1 activators (AP-1) such as c-Fos and c-Jun. The expression of Nox1 was suppressed by CAPE through the down-regulation of IKKβ/IκBα/NF-κB and JNK/AP-1 signal pathway. This study provides evidence that the anti-osteoclastic effect of CAPE depends upon the attenuated superoxide anion production, which is closely related with interruption of an active Nox1 complex formation due to the attenuated catalytic subunit Nox1 expression resulting from suppression of the IKKβ/IκBα/NF-κB and JNK/AP-1 signaling pathway and the down-regulation of the p47phox subunit translocation to the cell membrane.  相似文献   

12.
AIMS: To evaluate the antibacterial and free-radical scavenging (FRS) activities of propolis collected from three different areas of Sonoran Desert in northwestern Mexico [Pueblo de Alamos (PAP), Ures (UP) and Caborca (CP)]. METHODS AND RESULTS: The antibacterial and FRS activities of Sonoran propolis were determined by the broth microdilution method and the DPPH (1,1-diphenyl-2-picrylhydracyl) assay, respectively. Propolis samples had antibacterial activity against only Gram-positive bacteria. The UP sample showed the highest antibacterial activity against Staphylococcus aureus [minimal inhibitory concentration (MIC) 100 microg ml(-1)] in a concentration-dependent manner (UP > CP > PAP). Caffeic acid phenethyl ester (CAPE), a UP propolis constituent, had very high growth-inhibitory activity towards Gram-positive bacteria, particularly against S. aureus (MIC 0.1 mmol l(-1)). To our knowledge, this is the first study showing a strong antibacterial activity of CAPE against S. aureus. Additionally, propolis CP exhibited high FRS activity (86% +/- 0.3 at 100 microg ml(-1)) comparable with those of the reference antioxidants vitamin C (87.4% +/- 1.7 at 70 micromol l(-1)) and BHT (66.07% +/- 0.76 at 140 micromol l(-1)). The propolis compounds CAPE and rutin showed high FRS activity (90.4% +/- 0.2 and 88.5% +/- 0.8 at 70 micromol l(-1), respectively). CONCLUSIONS: Sonoran propolis UP and CAPE had strong antibacterial activity against S. aureus. In addition, propolis CP showed potent FRS activity comparable with those of vitamin C and BHT. SIGNIFICANCE AND IMPACT OF THE STUDY: The strong antibacterial and antioxidant properties of Sonoran propolis and some of its constituents support further studies on the clinical applications of this natural bee product against S. aureus and several oxidative damage-related diseases.  相似文献   

13.
Two simple, sensitive and reproducible methods for determination of total mycophenolic acid (MPA) and its glucuronide metabolite (MPAG) as well as unbound MPA (fMPA) was developed by the use of HPLC-UV and LC-MS/MS methods, respectively. For the total MPA/MPAG method, the analytes were extracted using Isolute C(2) solid-phase extraction (SPE) cartridges and analyzed at 254 nm over a Zorbax Rx C(8) column (150 mm x 4.6 mm, 5 microm). The mobile phase was a gradient mixture of methanol and water (containing 0.1% (v/v) phosphoric acid). The total run time was 18 min and the extraction recovery was 77% for MPA and 84% for MPAG. The method was precise and accurate with a lower limit of quantification (LLOQ) of 0.5 mg/l for MPA and 5.0 mg/l for MPAG. For the fMPA method, plasma was subjected to ultrafiltration followed by SPE using C(18) cartridges. Analytical column was the same as the HPLC-UV method and the mobile phase was a gradient composition of methanol:0.05% formic acid with a flow rate of 0.6 ml/min for the first 3 min and 0.7 ml for the last 4 min. The chromatographic method separated MPA from its metabolites MPAG and Acyl-MPAG. Mass transitions in negative ionization mode for MPA and the internal standard, indomethacin were m/z: 319-->190.9 and m/z: 356-->312.2, respectively. The assay was linear in the concentration range of 1-1000 microg/l for fMPA with a LLOQ of 1 microg/l and an accuracy of >95%. The two methods reported have an adequate degree of robustness and dynamic concentration range for the measurement of MPA, MPAG and fMPA for therapeutic drug monitoring purposes or pharmacokinetics investigations.  相似文献   

14.
Fertilizing competency of multiple ovulated eggs in the domestic fowl was examined by fertilization in vitro and early development in culture. Normal laying hens (White Leghorn) were treated with 75 IU of PMSG for 7 days followed by injection of anterior pituitary extracts from chickens (CAPE). Ovulation began to occur 7.5 h after injection of CAPE. These hens ovulated 1-7 ova but some premature ovulation of GV stage ova were observed. In vitro fertilization of the multiple ovulated ova was examined by inseminating 10(6)-10(7) sperm onto the germinal disks in m-Ringer's solution. The gamete or zygote nuclei were detected by DNA specific fluorescence using DAPI (4',6'-diamidino-2-phenylindole) in the histological section prepared from the germinal disk. Process of fertilization was examined in the eggs incubated for 4 h after insemination in DMEM + liquid albumen at 41 degrees C under the atmosphere of 5% CO2 in air. Fertilization rate of the total multiple ovulated eggs was 55% (11/20), in which 90% (9/10) and 10% (1/10) in the eggs recovered 7.5-8.5 h and 9.0-9.5 h after CAPE injection were obtained, respectively. Normal pronuclei were formed in five eggs of those recovered 7.5-8.5 h after CAPE injection. Early development after fertilization in vitro was also examined by incubation for 12 h in DMEM + liquid albumen at 41 degrees C under the atmosphere of 5% CO2 in air. Although development in vitro was delayed compared to that in utero condition, normal development was observed in naturally and multiple ovulated eggs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We described the development and full validation of rapid and accurate liquid chromatography method, coupled with tandem mass spectrometry detection, for quantification of meprobamate in human plasma with [(13)C-(2)H(3)]-meprobamate as internal standard. Plasma pretreatment involved a one-step protein precipitation with acetonitrile. Separation was performed by reversed-phase chromatography on a Luna MercuryMS C18 (20 mm×4 mm×3 μm) column using a gradient elution mode. The mobile phase was a mix of distilled water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. The selected reaction monitoring transitions, in electrospray positive ionization, used for quantification were 219.2→158.2 m/z and 223.1→161.1m/z for meprobamate and internal standard, respectively. Qualification transitions were 219.2→97.0 and 223.1→101.1 m/z for meprobamate and internal standard, respectively. The method was linear over the concentration range of 1-300 mg/L. The intra- and inter-day precision values were below 6.4% and accuracy was within 95.3% and 103.6% for all QC levels (5, 75 and 200 mg/L). The lower limit of quantification was 1 mg/L. Total analysis time was reduced to 6 min including sample preparation. The present method is successfully applied to 24/7 clinical toxicology and demonstrated its usefulness to detect meprobamate poisoning.  相似文献   

16.
Migration, invasion, metastasis and angiogenesis associated with cancer depend on the surrounding microenvironment. Angiogenesis, the growth of new capillaries, is a regulator of cancer growth and a useful target for cancer therapy. We examined matrix protein interactions in a gastric cancer cell culture that was treated with different doses of caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester (CAPE). We also investigated the relations among the levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), endostatin (ES) and trombospondin-1 (TSP-1). Cytotoxity of CAPE was measured using the 3-(4,5-dmethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. We examined the behavior of cells on laminin and collagen I coated surfaces in response to the angiogenic effect of these matrix molecules. We examined the protein alterations of these matrix molecules immunohistochemically and measured the levels of VEGF, MMP-9, ES and TSP-1 using the ELISA test. We showed that application of CAPE to the gastric cancer cell line on tissue culture plastic, laminin and collagen I significantly decreased the VEGF and MMP-9 protein levels. We found that TSP-1 levels were increased significantly in the gastric cancer cells after application of CAPE. The protein levels of gastric cancer cells also were increased significantly when tissue was cultured on laminin and collagen I. Application of CAPE to cells on laminin or collagen I coated surfaces significantly increased all of the proteins except ES. ES levels were increased on the collagen I covered surfaces, but the laminin surface decreased the levels of ES significantly. We demonstrated the beneficial effect of CAPE on a gastric cancer cell line including inhibition of proliferation and induction of some proteins that might be related to decreased angiogenesis.  相似文献   

17.
The active component of the honeybee hive product propolis, caffeic acid phenethyl ester (CAPE), has been shown to display increased toxicity toward various oncogene-transformed cell lines in comparison with their untransformed counterparts (Su et al., 4: 231-242, 1991). This observation provides support for the concept that it is the transformed phenotype which is specifically sensitive to CAPE. In the present study, we have determined the effect of CAPE on the growth and antigenic phenotype of a human melanoma cell line, HO-1, and a human glioblastoma multiforme cell line, GBM-18. For comparison, we have also tested the effects of mezerein (MEZ), mycophenolic acid (MPA) and retinoic acid (RA), which can differentially modulate growth, differentiation and the antigenic phenotype in these human tumor cell lines. Growth of both cell lines was suppressed by CAPE in a dose-dependent fashion, with HO-1 cells being more sensitive than GBM-18 cells. The antiproliferative effect of CAPE was enhanced in both cell types if CAPE and MEZ were used in combination. Growth suppression was associated with morphological changes in H0-1 cells, suggesting induction of a more differentiated phenotype. CAPE also differentially modulated the expression of several antigens on the surface of the two tumor cell lines. These results suggest a potential role for CAPE as an antitumor agent, an antigenic modulating agent and possibly a differentiation inducing agent.  相似文献   

18.
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene. Accumulation of very long chain fatty acids (VLCFA) that have been attributed to reduced peroxisomal VLCFA β-oxidation activity are the hallmark of the disease. Overexpression of ABCD2 gene, the closest homolog of ABCD1, has been shown to compensate for ABCD1, thus correcting the VLCFA derangement. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of caffeic acid phenethyl ester (CAPE) in inducing the expression of ABCD2 (ALDRP), and normalizing the peroxisomal β-oxidation as well as the levels of saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1), was also reduced by CAPE treatment. Importantly, CAPE upregulated Abcd2 expression and peroxisomal β-oxidation and lowered the VLCFA levels in Abcd1-deficient U87 astrocytes and B12 oligodendrocytes. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes we examined the effects of CAPE in VLCFA-induced inflammatory response. CAPE treatment decreased the inflammatory response as the expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. The observations indicate that CAPE corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be a potential drug candidate to be tested for X-ALD therapy in humans.  相似文献   

19.
Toluene is an organic solvent that is toxic to humans. Caffeic acid phenethyl ester (CAPE) and thymoquinone (TQ) exhibit antioxidant and antitoxic effects. We investigated the protective effects of CAPE and TQ on toluene induced hepatotoxicity. Wistar albino rats were divided into seven groups of eight. The animals were injected intraperitoneally (i.p.) with 0.1 ml/10 g/day corn oil (control I), 0.1 ml/10 g/day corn oil + 2 ml/kg/day 10% ethanol (control II), 20 mg/kg/day TQ dissolved in 0.1 ml/10 g corn oil (TQ), 10 µmol/kg/day CAPE dissolved in 10% ethanol (CAPE), 500 mg/kg/day toluene (T), toluene and TQ together (T + TQ), or toluene and CAPE together (T + CAPE). All rats were sacrificed on day 15. Liver samples were obtained for histological analysis. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured to evaluate liver function. Liver sections from the control I and TQ groups exhibited normal histology. Sections from the T group exhibited sinusoid dilation, hemorrhage, vacuolization and necrosis. TQ and CAPE protected against toluene induced histopathological changes. AST and ALT levels were increased significantly in T group compared to both control groups. CAPE decreased significantly the toluene induced increase in AST and ALT levels, while TQ did not. CAPE and TQ exhibited some antitoxic and hepato-protective effects on toluene induced liver damage.  相似文献   

20.
Caffeic acid phenethyl ester (CAPE) is a natural product with potent anti-inflammatory, antitumor, and antioxidant activities, and attenuates inflammation and lipid peroxidation. The purpose of the present study was to investigate the effects of CAPE on iron-induced liver damage. Rats were divided into four groups and treated for 7 days with saline (control group), 10 μmol kg CAPE/day s.c. (CAPE group), 50 mg iron-dextran/kg i.p. (IRON group) and CAPE and iron at the same time (IRON+CAPE group). Seven days later, rats were killed and the livers were excised for biochemical analysis. The administration of IRON alone resulted in higher myeloperoxidase (MPO) activity and lipid peroxidation than in the control and CAPE treatment prevented the increase in MPO activity and malondialdeyde (MDA) level. No differences were observed in all four groups with regards to superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities. Our results collectively suggest that CAPE may be an available agent to protect the liver from injury via inhibition of MPO activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号