首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence organization of the human genome   总被引:1,自引:0,他引:1  
The organization of three sequence classes—single copy, repetitive, and inverted repeated sequences—within the human genome has been studied by renaturation techniques, hydroxylapatite binding methods, and DNA hyperchromism. Repetitive sequence classes are distributed throughout 80% or more of the genome. Slightly more than half of the genome consists of short single copy sequences, with a length of about 2 kb interspersed with repetitive sequences. The average length of the repetitive sequences is also small and approximates the length of these sequences found in other organisms. The sequence organization of the human genome therefore resembles the sequence organization found in Xenopus and sea urchin. The inverted repeats are essentially randomly positioned with respect to both sequence class and sequence arrangement, so that all three sequence classes are found to be mutually interspersed in a portion of the genome.  相似文献   

2.
Sequence organization of the mitochondrial genome of yeast--a review   总被引:3,自引:0,他引:3  
M de Zamaroczy  G Bernardi 《Gene》1985,37(1-3):1-17
We have compiled the available primary structural data for the mitochondrial genome of Saccharomyces cerevisiae and have estimated the size of the remaining gaps, which represent 12-13% of the genome. The lengths of sequenced regions and of gaps lead to a new assessment of genome sizes; these range (in round figures) from 85 000 bp for the long genomes, to 78 000 bp for the short genomes, to 74 000 bp for the supershort genome of Saccharomyces carlsbergensis. These values are 8-11% higher than those previously estimated from restriction fragments. Interstrain differences concern not only facultative intervening sequences (introns) and mini-inserts, but also insertions/deletions in intergenic sequences. The primary structure appears to be extremely conserved in genes and ori sequences, and highly conserved in intergenic sequences. Since coding sequences represent at most 33-35% of the genome, at least two thirds of the genome are formed by noncoding and yet highly conserved sequences. The G + C level of genes or exon is 25%, and that of intronic open reading frames (ORFs) 22%; increasingly lower values are shown by intronic closed reading frames (CRFs), 20%, ori sequences, 19%, intergenic ORFs, 17.5% and intergenic sequences, 15%.  相似文献   

3.
All fully sequenced baculovirus genomes, with the exception of the dipteran Culex nigripalpus nucleopolyhedrovirus (CuniNPV), have previously been from Lepidoptera. This study reports the sequencing and characterization of a hymenopteran baculovirus, Neodiprion lecontei nucleopolyhedrovirus (NeleNPV), from the redheaded pine sawfly. NeleNPV has the smallest genome so far published (81,755 bp) and has a GC content of only 33.3%. It contains 89 potential open reading frames, 43 with baculovirus homologues, 6 identified by conserved domains, and 1 with homology to a densovirus structural protein. Average amino acid identity of homologues ranged from 19.7% with CuniNPV to 24.9% with Spodoptera exigua nucleopolyhedrovirus. The conserved set of baculovirus genes has dropped to 29, since NeleNPV lacks an F protein homologue (ac23/ld130). NeleNPV contains 12 conserved lepidopteran baculovirus genes, including that for DNA binding protein, late expression factor 11 (lef-11), polyhedrin, occlusion derived virus envelope protein-18 (odv-e18), p40, and p45, but lacks 21 others, including lef-3, me53, immediate early gene-1, lef-6, pp31, odv-e66, few polyhedra 25k, odv-e25, protein kinase-1, fibroblast growth factor, and ubiquitin. The lack of identified baculovirus homologues may be due to difficulties in identification, differences in host-virus interactions, or other genes performing similar functions. Gene parity plots showed limited colinearity of NeleNPV with other baculoviruses, and phylogenetic analysis indicates that NeleNPV may have existed before the lepidopteran nucleopolyhedrovirus and granulovirus divergence. The creation of two new Baculoviridae genera to fit hymenopteran and dipteran baculoviruses may be necessary.  相似文献   

4.
Of 30 baculovirus genomes that have been sequenced to date, the only nonlepidopteran baculoviruses include the dipteran Culex nigripalpus nucleopolyhedrovirus and two hymenopteran nucleopolyhedroviruses that infect the sawflies Neodiprion lecontei (NeleNPV) and Neodiprion sertifer (NeseNPV). This study provides a complete sequence and genome analysis of the nucleopolyhedrovirus that infects the balsam fir sawfly Neodiprion abietis (Hymenoptera, Symphyta, Diprionidae). The N. abietis nucleopolyhedrovirus (NeabNPV) is 84,264 bp in size, with a G+C content of 33.5%, and contains 93 predicted open reading frames (ORFs). Eleven predicted ORFs are unique to this baculovirus, 10 ORFs have a putative sequence homologue in the NeleNPV genome but not the NeseNPV genome, and 1 ORF (neab53) has a putative sequence homologue in the NeseNPV genome but not the NeleNPV genome. Specific repeat sequences are coincident with major genome rearrangements that distinguish NeabNPV and NeleNPV. Genes associated with these repeat regions encode a common amino acid motif, suggesting that they are a family of repeated contiguous gene clusters. Lepidopteran baculoviruses, similarly, have a family of repeated genes called the bro gene family. However, there is no significant sequence similarity between the NeabNPV and bro genes. Homologues of early-expressed genes such as ie-1 and lef-3 were absent in NeabNPV, as they are in the previously sequenced hymenopteran baculoviruses. Analyses of ORF upstream sequences identified potential temporally distinct genes on the basis of putative promoter elements.  相似文献   

5.
Sequence organization of the rat genome by electron microscopy.   总被引:2,自引:0,他引:2  
The size and arrangement of repetitive and inverted repeat (foldback) sequences in rat DNA were studied by visualization of hybrid and heteroduplex structures in the electron microscope. The self-reassociation of repetitive sequence-bearing DNA strands often results in the formation of four-ended "H" structures, whose duplex regions equal the repetitive sequence length and can be measured in the electron microscope. In this way, it was determined that the average size of the class of numerous short repetitive sequences is 0.40 +/- 0.15 kbp. Heteroduplex structures were prepared between long whole DNA single strands and short repeat-sequence-bearing strands. The analysis of these structures confirms that the size of the repetitive sequences in 0.4 kbp on average. Length measurements between adjacent duplexes show that the average spacing between two interspersed repeats is at least 1.5-1.8 kbp. By examining 29.4-kbp single strands after brief renaturation, the size and distribution of foldback sequences were determined. There are 1.9 X 10(5) foldback apirs per rat genome, spaced an average of 9.7 kbp apart according to our measurement. Repetitive, inverted repeat and unique sequences are interspersed with each other in at least half the genome.  相似文献   

6.
Sequence and genome organization of Borna disease virus.   总被引:36,自引:19,他引:17       下载免费PDF全文
  相似文献   

7.
Sequence composition, organization, and evolution of the core Triticeae genome   总被引:13,自引:0,他引:13  
We investigated the composition and the basis of genome expansion in the core Triticeae genome using Aegilops tauschii, the D-genome donor of bread wheat. We sequenced an unfiltered genomic shotgun (trs) and a methylation-filtration (tmf) library of A. tauschii, and analyzed wheat expressed sequence tags (ESTs) to estimate the expression of genes and transposable elements (TEs). The sampled D-genome sequences consisted of 91.6% repetitive elements, 2.5% known genes, and 5.9% low-copy sequences of unknown function. TEs constituted 68.2% of the D-genome compared with 50% in maize and 14% in rice. The DNA transposons constituted 13% of the D-genome compared with 2% in maize. TEs were methylated unevenly within and among elements and families, and most were transcribed which contributed to genome expansion in the core Triticeae genome. The copy number of a majority of repeat families increased gradually following polyploidization. Certain TE families occupied discrete chromosome territories. Nested insertions and illegitimate recombination occurred extensively between the TE families, and a majority of the TEs contained internal deletions. The GC content varied significantly among the three sequence sets examined ranging from 42% in tmf to 46% in trs and 52% in the EST. Based on enrichment of genic sequences, methylation-filtration offers one option, although not as efficient as in maize, for isolating gene-rich regions from the large genome of wheat.  相似文献   

8.
Sequence analysis of cloned plant disease-resistance genes reveals a number of conserved domains. Researchers have used these domains to amplify analogous sequences, resistance gene analogs (RGAs), from soybean and other crops. Many of these RGAs map in close proximity to known resistance genes. While this technique is useful in identifying potential disease resistance loci, identifying the functional resistance gene from a cluster of homologs requires sequence information from outside of these conserved domains. To study RGA expression and to determine the extent of their similarity to other plant resistance genes, two soybean cDNA libraries (root and epicotyl) were screened by hybridization with RGA class-specific probes. cDNAs hybridizing to RGA probes were detected in each library. Two types of cDNAs were identified. One type was full-length and contained several disease-resistance gene (R-gene) signatures. The other type contained several deletions within these signatures. Sequence analyses of the cDNA clones placed them in the Toll-Interleukin-1 receptor, nucleotide binding domain, and leucine-rich repeat family of disease-resistance genes. Using clone-specific primers from within the 3' end of the LRRs, we were able to map two cDNA clones (LM6 and MG13) to a BAC contig that is known to span a cluster of disease-resistance genes.  相似文献   

9.
乌龟线粒体全基因组序列和结构分析   总被引:3,自引:0,他引:3  
龟鳖类同其它类群脊椎动物的系统进化关系一直存在争论。为进一步从分子水平上探讨这一问题,本文参照近源物种的线粒体基因组,设计了16对特异引物,采用PCR产物直接测序法测得了乌龟线粒体基因组全序列。结果表明:乌龟线粒体基因组序列全长16576bp,包括2个rRNA基因、22个tRNA基因、13个蛋白质编码基因和1个非编码控制区。乌龟线粒体基因组结构和基因排列顺序与其它龟鳖类相同,在“WANCY区”包含一个“stemloop”结构,ND3基因174位点存在一个额外插入的腺苷酸(A)。本文通过比较分析结构基因在主要脊椎动物类群中的排列顺序,探讨了龟鳖类与其它主要脊椎动物类群的系统进化关系  相似文献   

10.
赤麂线粒体全基因组的序列和结构   总被引:4,自引:0,他引:4  
提取赤麂细胞株总DNA,参照我们实验室已测定的同属动物小麂线粒体全基因组序列设计引物,PCR扩增、测序、拼接,获得赤麂线粒体全基因组序列并进行生物信息学分析。赤麂线粒体全基因组序列全长16354bp。定位了22个tRNA基因、2个rRNA基因、13个蛋白编码基因和1个D-loop区。赤麂与小麂及其它哺乳动物线粒体的基因组结构相同,它们的序列同源性都较高。  相似文献   

11.
12.
The linear sequence of genomes exists within the three-dimensional space of the cell nucleus. The spatial arrangement of genes and chromosomes within the interphase nucleus is nonrandom and gives rise to specific patterns. While recent work has begun to describe some of the positioning patterns of chromosomes and gene loci, the structural constraints that are responsible for nonrandom positioning and the relevance of spatial genome organization for genome expression are unclear. Here we discuss potential functional consequences of spatial genome organization and we speculate on the possible molecular mechanisms of how genomes are organized within the space of the mammalian cell nucleus.  相似文献   

13.
Rice genome organization: the centromere and genome interactions   总被引:9,自引:0,他引:9  
Over the last decade, many varied resources have become available for genome studies in rice. These resources include over 4000 DNA markers, several bacterial artificial chromosome (BAC) libraries, P-1 derived artificial chromosome (PAC) libraries and yeast artificial chromosome (YAC) libraries (genomic DNA clones, filters and end-sequences), retrotransposon tagged lines, and many chemical and irradiated mutant lines. Based on these, high-density genetic maps, cereal comparative maps, YAC and BAC physical maps, and quantitative trait loci (QTL) maps have been constructed, and 93 % of the genome has also been sequenced. These data have revealed key features of the genetic and physical structure of the rice genome and of the evolution of cereal chromosomes. This Botanical Briefing examines aspects of how the rice genome is organized structurally, functionally and evolutionarily. Emphasis is placed on the rice centromere, which is composed of long arrays of centromere-specific repetitive sequences. Differences and similarities amongst various cereal centromeres are detailed. These indicate essential features of centromere function. Another view of various kinds of interactive relationships within and between genomes, which could play crucial roles in genome organization and evolution, is also introduced. Constructed genetic and physical maps indicate duplication of chromosomal segments and spatial association between specific chromosome regions. A genome-wide survey of interactive genetic loci has identified various reproductive barriers that may drive speciation of the rice genome. The significance of these findings in genome organization and evolution is discussed.  相似文献   

14.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

15.
Dynamic bacterial genome organization   总被引:12,自引:1,他引:11  
Recently completed projects of sequencing chromosomal fragments and entire chromosomes, as well as physical mapping of genomes, have opened novel inroads to the understanding of the biology of bacterial genomes. From these studies one may draw some conclusions. (i) The organization of orthologous genes on the bacterial chromosome is not conserved during evolution. (ii) The bacterial genome is more complex and also more flexible than hitherto thought. Genetic elements are sometimes part of the chromosome, while at other times they are independent elements or parts of alternative replicons (e.g. large plasmids). Such replicons, carrying essential genes, now seem to deserve the designation 'secondary chromosomes'. A study of the regulation of replication and segregation of these essential genetic elements will be of great interest.  相似文献   

16.
The review summarizes the recent papers on the studies of primary structure of genome of a number of paramyxoviruses from the three genera of a family. The cited data demonstrate that despite the common principles of the genetic material arrangement shared by paramyxoviruses, they are variable in the genome, the primary structure of intragenic region, as well as the strategy of coding for some proteins. The data on the arrangement of the genetic material is discussed as useful as a criterion for classification of single stranded viruses with unsegmented genome.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号