共查询到20条相似文献,搜索用时 15 毫秒
1.
We have compiled the available primary structural data for the mitochondrial genome of Saccharomyces cerevisiae and have estimated the size of the remaining gaps, which represent 12-13% of the genome. The lengths of sequenced regions and of gaps lead to a new assessment of genome sizes; these range (in round figures) from 85 000 bp for the long genomes, to 78 000 bp for the short genomes, to 74 000 bp for the supershort genome of Saccharomyces carlsbergensis. These values are 8-11% higher than those previously estimated from restriction fragments. Interstrain differences concern not only facultative intervening sequences (introns) and mini-inserts, but also insertions/deletions in intergenic sequences. The primary structure appears to be extremely conserved in genes and ori sequences, and highly conserved in intergenic sequences. Since coding sequences represent at most 33-35% of the genome, at least two thirds of the genome are formed by noncoding and yet highly conserved sequences. The G + C level of genes or exon is 25%, and that of intronic open reading frames (ORFs) 22%; increasingly lower values are shown by intronic closed reading frames (CRFs), 20%, ori sequences, 19%, intergenic ORFs, 17.5% and intergenic sequences, 15%. 相似文献
2.
Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome 总被引:8,自引:0,他引:8
下载免费PDF全文

Lauzon HA Lucarotti CJ Krell PJ Feng Q Retnakaran A Arif BM 《Journal of virology》2004,78(13):7023-7035
All fully sequenced baculovirus genomes, with the exception of the dipteran Culex nigripalpus nucleopolyhedrovirus (CuniNPV), have previously been from Lepidoptera. This study reports the sequencing and characterization of a hymenopteran baculovirus, Neodiprion lecontei nucleopolyhedrovirus (NeleNPV), from the redheaded pine sawfly. NeleNPV has the smallest genome so far published (81,755 bp) and has a GC content of only 33.3%. It contains 89 potential open reading frames, 43 with baculovirus homologues, 6 identified by conserved domains, and 1 with homology to a densovirus structural protein. Average amino acid identity of homologues ranged from 19.7% with CuniNPV to 24.9% with Spodoptera exigua nucleopolyhedrovirus. The conserved set of baculovirus genes has dropped to 29, since NeleNPV lacks an F protein homologue (ac23/ld130). NeleNPV contains 12 conserved lepidopteran baculovirus genes, including that for DNA binding protein, late expression factor 11 (lef-11), polyhedrin, occlusion derived virus envelope protein-18 (odv-e18), p40, and p45, but lacks 21 others, including lef-3, me53, immediate early gene-1, lef-6, pp31, odv-e66, few polyhedra 25k, odv-e25, protein kinase-1, fibroblast growth factor, and ubiquitin. The lack of identified baculovirus homologues may be due to difficulties in identification, differences in host-virus interactions, or other genes performing similar functions. Gene parity plots showed limited colinearity of NeleNPV with other baculoviruses, and phylogenetic analysis indicates that NeleNPV may have existed before the lepidopteran nucleopolyhedrovirus and granulovirus divergence. The creation of two new Baculoviridae genera to fit hymenopteran and dipteran baculoviruses may be necessary. 相似文献
3.
Of 30 baculovirus genomes that have been sequenced to date, the only nonlepidopteran baculoviruses include the dipteran Culex nigripalpus nucleopolyhedrovirus and two hymenopteran nucleopolyhedroviruses that infect the sawflies Neodiprion lecontei (NeleNPV) and Neodiprion sertifer (NeseNPV). This study provides a complete sequence and genome analysis of the nucleopolyhedrovirus that infects the balsam fir sawfly Neodiprion abietis (Hymenoptera, Symphyta, Diprionidae). The N. abietis nucleopolyhedrovirus (NeabNPV) is 84,264 bp in size, with a G+C content of 33.5%, and contains 93 predicted open reading frames (ORFs). Eleven predicted ORFs are unique to this baculovirus, 10 ORFs have a putative sequence homologue in the NeleNPV genome but not the NeseNPV genome, and 1 ORF (neab53) has a putative sequence homologue in the NeseNPV genome but not the NeleNPV genome. Specific repeat sequences are coincident with major genome rearrangements that distinguish NeabNPV and NeleNPV. Genes associated with these repeat regions encode a common amino acid motif, suggesting that they are a family of repeated contiguous gene clusters. Lepidopteran baculoviruses, similarly, have a family of repeated genes called the bro gene family. However, there is no significant sequence similarity between the NeabNPV and bro genes. Homologues of early-expressed genes such as ie-1 and lef-3 were absent in NeabNPV, as they are in the previously sequenced hymenopteran baculoviruses. Analyses of ORF upstream sequences identified potential temporally distinct genes on the basis of putative promoter elements. 相似文献
4.
Sequence organization of the rat genome by electron microscopy. 总被引:2,自引:0,他引:2
The size and arrangement of repetitive and inverted repeat (foldback) sequences in rat DNA were studied by visualization of hybrid and heteroduplex structures in the electron microscope. The self-reassociation of repetitive sequence-bearing DNA strands often results in the formation of four-ended "H" structures, whose duplex regions equal the repetitive sequence length and can be measured in the electron microscope. In this way, it was determined that the average size of the class of numerous short repetitive sequences is 0.40 +/- 0.15 kbp. Heteroduplex structures were prepared between long whole DNA single strands and short repeat-sequence-bearing strands. The analysis of these structures confirms that the size of the repetitive sequences in 0.4 kbp on average. Length measurements between adjacent duplexes show that the average spacing between two interspersed repeats is at least 1.5-1.8 kbp. By examining 29.4-kbp single strands after brief renaturation, the size and distribution of foldback sequences were determined. There are 1.9 X 10(5) foldback apirs per rat genome, spaced an average of 9.7 kbp apart according to our measurement. Repetitive, inverted repeat and unique sequences are interspersed with each other in at least half the genome. 相似文献
5.
6.
Sequence analysis of cloned plant disease-resistance genes reveals a number of conserved domains. Researchers have used these domains to amplify analogous sequences, resistance gene analogs (RGAs), from soybean and other crops. Many of these RGAs map in close proximity to known resistance genes. While this technique is useful in identifying potential disease resistance loci, identifying the functional resistance gene from a cluster of homologs requires sequence information from outside of these conserved domains. To study RGA expression and to determine the extent of their similarity to other plant resistance genes, two soybean cDNA libraries (root and epicotyl) were screened by hybridization with RGA class-specific probes. cDNAs hybridizing to RGA probes were detected in each library. Two types of cDNAs were identified. One type was full-length and contained several disease-resistance gene (R-gene) signatures. The other type contained several deletions within these signatures. Sequence analyses of the cDNA clones placed them in the Toll-Interleukin-1 receptor, nucleotide binding domain, and leucine-rich repeat family of disease-resistance genes. Using clone-specific primers from within the 3' end of the LRRs, we were able to map two cDNA clones (LM6 and MG13) to a BAC contig that is known to span a cluster of disease-resistance genes. 相似文献
7.
乌龟线粒体全基因组序列和结构分析 总被引:3,自引:0,他引:3
龟鳖类同其它类群脊椎动物的系统进化关系一直存在争论。为进一步从分子水平上探讨这一问题,本文参照近源物种的线粒体基因组,设计了16对特异引物,采用PCR产物直接测序法测得了乌龟线粒体基因组全序列。结果表明:乌龟线粒体基因组序列全长16576bp,包括2个rRNA基因、22个tRNA基因、13个蛋白质编码基因和1个非编码控制区。乌龟线粒体基因组结构和基因排列顺序与其它龟鳖类相同,在“WANCY区”包含一个“stemloop”结构,ND3基因174位点存在一个额外插入的腺苷酸(A)。本文通过比较分析结构基因在主要脊椎动物类群中的排列顺序,探讨了龟鳖类与其它主要脊椎动物类群的系统进化关系 相似文献
8.
The linear sequence of genomes exists within the three-dimensional space of the cell nucleus. The spatial arrangement of genes and chromosomes within the interphase nucleus is nonrandom and gives rise to specific patterns. While recent work has begun to describe some of the positioning patterns of chromosomes and gene loci, the structural constraints that are responsible for nonrandom positioning and the relevance of spatial genome organization for genome expression are unclear. Here we discuss potential functional consequences of spatial genome organization and we speculate on the possible molecular mechanisms of how genomes are organized within the space of the mammalian cell nucleus. 相似文献
9.
10.
Rice genome organization: the centromere and genome interactions 总被引:9,自引:0,他引:9
Over the last decade, many varied resources have become available for genome studies in rice. These resources include over 4000 DNA markers, several bacterial artificial chromosome (BAC) libraries, P-1 derived artificial chromosome (PAC) libraries and yeast artificial chromosome (YAC) libraries (genomic DNA clones, filters and end-sequences), retrotransposon tagged lines, and many chemical and irradiated mutant lines. Based on these, high-density genetic maps, cereal comparative maps, YAC and BAC physical maps, and quantitative trait loci (QTL) maps have been constructed, and 93 % of the genome has also been sequenced. These data have revealed key features of the genetic and physical structure of the rice genome and of the evolution of cereal chromosomes. This Botanical Briefing examines aspects of how the rice genome is organized structurally, functionally and evolutionarily. Emphasis is placed on the rice centromere, which is composed of long arrays of centromere-specific repetitive sequences. Differences and similarities amongst various cereal centromeres are detailed. These indicate essential features of centromere function. Another view of various kinds of interactive relationships within and between genomes, which could play crucial roles in genome organization and evolution, is also introduced. Constructed genetic and physical maps indicate duplication of chromosomal segments and spatial association between specific chromosome regions. A genome-wide survey of interactive genetic loci has identified various reproductive barriers that may drive speciation of the rice genome. The significance of these findings in genome organization and evolution is discussed. 相似文献
11.
Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates 总被引:67,自引:0,他引:67
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level. 相似文献
12.
Dynamic bacterial genome organization 总被引:11,自引:1,他引:11
Anne-Brit Kolstø 《Molecular microbiology》1997,24(2):241-248
Recently completed projects of sequencing chromosomal fragments and entire chromosomes, as well as physical mapping of genomes, have opened novel inroads to the understanding of the biology of bacterial genomes. From these studies one may draw some conclusions. (i) The organization of orthologous genes on the bacterial chromosome is not conserved during evolution. (ii) The bacterial genome is more complex and also more flexible than hitherto thought. Genetic elements are sometimes part of the chromosome, while at other times they are independent elements or parts of alternative replicons (e.g. large plasmids). Such replicons, carrying essential genes, now seem to deserve the designation 'secondary chromosomes'. A study of the regulation of replication and segregation of these essential genetic elements will be of great interest. 相似文献
13.
The review summarizes the recent papers on the studies of primary structure of genome of a number of paramyxoviruses from the three genera of a family. The cited data demonstrate that despite the common principles of the genetic material arrangement shared by paramyxoviruses, they are variable in the genome, the primary structure of intragenic region, as well as the strategy of coding for some proteins. The data on the arrangement of the genetic material is discussed as useful as a criterion for classification of single stranded viruses with unsegmented genome. 相似文献
14.
15.
16.
17.
Sabina Hudakova Wolfgang Michalek Gernot G. Presting Rogier ten Hoopen Karla dos Santos Zuzana Jasencakova Ingo Schubert 《Nucleic acids research》2001,29(24):5029-5035
By sequencing, fingerprinting and in situ hybridization of a centromere-specific large insert clone (BAC 7), the sequence organization of centromeric DNA of barley could be elucidated. Within 23 kb, three copies of the Ty3/gypsy-like retroelement cereba were present. Two elements of ~7 kb, arranged in tandem, include long terminal repeats (LTRs) (~1 kb) similar to the rice centromeric retrotransposon RIRE 7 and to the cereal centromeric sequence family, the primer binding site, the complete polygene flanked by untranslated regions, as well as a polypurine tract 5′ of the downstream LTR. The high density (~200 elements/centromere) and completeness of cereba elements and the absence of internally deleted elements and solo LTRs from the BAC 7 insert represent unique features of the barley centromeres as compared to those of other cereals. Obviously, the conserved cereba elements together with barley-specific G+C-rich satellite sequences constitute the major components of centromeric DNA in this species. 相似文献
18.
DNA sequence organization in the soybean plant 总被引:3,自引:0,他引:3
Robert B. Goldberg 《Biochemical genetics》1978,16(1-2):45-68
The arrangement of repetitive and nonrepetitive DNA sequences in the soybean genome was ascertained by a comparison of the reassociation kinetics of short (250 nucleotides) and long (2700 nucleotides) DNA fragments, the size distribution of S-1 nuclease resistant repetitive duplexes, and a direct assay of the spectrum of DNA sequences present on long DNA fragments enriched in repetitive DNA. These measurements reveal the following: (1) The 1N genome size of the soybean plant is 1.97 pg. (2) Approximately 40% of the soybean genome consists of nonrepetitive or single-copy DNA sequences, while 60% is repetitive DNA. (3) The repetitive DNA is partitioned into three discrete classes termed very fast, fast, and slow, containing DNA sequences repeated an average of 290,000, 2800, and 19 times each. (4) Approximately 35–50% of the soybean genome is arranged in a short-period interspersion pattern of 250 nucleotide slow sequences and single-copy DNA averaging up to 2700 nucleotides in length. (5) From 30% to 45% of the soybean genome is organized into long stretches of repetitive DNA at least 1500 nucleotides in length. (6) Minimal interspersion of repetitive sequence classes occurs in soybean DNA.These experiments were supported by NSF Grants BMS74-21461 and PCM76-24593 and were conducted while the author was in the Department of Biology, Wayne State University, Detroit, Michigan. 相似文献
19.
20.
M. S. Rautian 《Russian Journal of Genetics》2010,46(9):1058-1061
The review summarizes modern views on to the structure and differentiation of the nuclear apparatus in ciliates. The genetic
system of ciliates (type Ciliophora) includes two types of nuclei: germinal micronucleus (MIC) and somatic macronucleus (MAC).
The MAC development is associated with the rearrangement of the MIC genome, which includes chromosome fragmentation and chromatin
diminution. The loss of DNA constitutes from 10–15% (Tetrahymena termophila) to 95–98% of the genome in spirotrichs (Stylonychia, Oxytricha, and Euplotes). Analysis of molecular mechanisms underlying nuclear dualism in ciliates promoted radical revision of the concept on the
interactions and roles of MAC and MIC. The micronucleus, as an inactive element, is an ideal field for the invasion and further
expansion of mobile genetic elements. Chromatin diminution plays the purifying role, restoring the native genome structure.
The process of recognition of “genetic garbage” to be eliminated has many features in common with the siRNA-mediated heterochromatization.
The presence of this mechanism in very early radiated eukaryotic lineages (Opistokonta and Chromalveolata), indicates that
it arose at the earliest stages of the eukaryotic evolution, probably, as a mechanism promoting genome integrity and stability. 相似文献