首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The role ofFrankia vesicle envelope lipids in regulating oxygen diffusion of symbiotic nitrogen fixation inAlnus incana was examined. Total lipids of symbioticFrankia (vesicle clusters) that had been adapted to oxygen tensions of 5,21, or 40 kPa were analyzed with a normal phase HPLC system. During the oxygen treatment, nitrogenase activity was measured as hydrogen evolution in an open flow-through system. When plants were transferred to low oxygen (5 kPa) or high oxygen (40 kPa), nitrogenase activity dropped initially. Activity recovered in both treatments with a rate comparable to the controls (21 kPa O2). Both lipid content and lipid composition of vesicle clusters were affected by the oxygen treatments. With increasing oxygen tension, the vesicle cluster lipid content increased. This correlated with structural data (fluorescence microscopy and TEM) which showed a thicker vesicle envelope at higher oxygen tension. Three hopanoid lipids, bacteriohopanetetrol (bht) and two isomers of phenylacetyl monoester of bht, made up approximately 80% of the vesicle cluster lipids. With changing oxygen concentrations, the ratio of the two bht esters changed whereas the relative proportion of bht remained fairly constant. Therefore, in theFrankia-Alnus incana symbiosis, adaptation to different ambient oxygen tensions occurs at least partly by increasing the thickness of theFrankia vesicle envelope and by changing its lipid composition.Abbreviations dw dry weight - bht bacteriohopanetetrol - SE standard error - TEM transmission electron microscopy Dedicated to the memory of Professor John G. Torrey  相似文献   

2.
The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.  相似文献   

3.
Experiments were performed to determine to what extent increments in esophageal and abdominal pressure would have on arterial blood pressure during fatiguing isometric exercise. Arterial blood pressure was measured during handgrip and leg isometric exercise performed with both a free and occluded circulation to active muscles. Handgrip contractions were exerted at 33 and 70% MVC (maximum voluntary contraction) by 4 volunteers in a sitting position and calf muscle contractions at 50 and 70% MVC with the subjects in a kneeling position. Esophageal pressure measured at the peak of inspirations did not change during either handgrip or leg contractions but peak expiratory pressures increased progressively during both handgrip and leg contractions as fatigue occurred. These increments were independent of the tensions of the isometric contractions exerted. Intra-abdominal pressures measured at the peak of either inspiration or expiration did not change during inspiration with handgrip contractions but increased during expiration. During leg exercise, intraabdominal pressures increased during both inspiration and expiration, reaching peak levels at fatigue. The arterial blood pressure also reached peak levels at fatigue, independent of circulatory occlusion and tension exerted, averaging 18.5-20 kPa (140-150 mm Hg) for both handgrip and leg contractions. While blood pressure returned to resting levels following exercise with a free circulation, it declined by only 2.7-3.8 kPa after leg and handgrip exercise, respectively, during circulatory occlusion. These results indicate that straining maneuvers contribute 3.5 to 7.8 kPa to the change in blood pressure depending on body position.  相似文献   

4.
Studies on the normal and parasitized rat intestine were used to investigate the effect of the tapeworm, Hymenolepis diminuta, on in vivo intestinal lumenal oxygen tensions, acid-base balance and mucosal absorption and accumulation of fluid and glucose.The lumenal bulk aqueous phase is considerable, well mixed and aerobic with an oxygen tension of 40–50 mm Hg. Neither the unstirred layers adjacent to the brush border membrane nor the area adjacent to the mucosa (“paramucosal lumen”) are significant barriers to the diffusion of oxygen from the blood to the intestinal lumen. In the uninfected distal ileum and colon anoxic conditions may occur in the central lumen, but, in the parasitized intestine fluid absorption is reduced and anoxic conditions do not occur. Increased H+ ion concentration in the parasitized intestine plays a role in increasing the availability of oxygen to intestinal helminths. Concomitant with the lower pH, the pCO2 in the lumen of the parasitized intestine was twice as high as that found in normal animals. The total CO2 in the parasitized intestine steadily decreased over a 3-h perfusion period, while in the normal intestine the total CO2 content increased after an initial fall during the first 30 min of perfusion. When the worms were removed, the ability of the intestine to restore normal acid-base balance was restored. Glucose and fluid absorption in both the infected and uninfected intestine were reduced by an increase in H+ ion concentration; both parameters were lower in the parasitized intestine than in the normal animals. Low pH increased fluid and glucose transport by H. diminuta.While the dry weights of both the parasitized and uninfected total small intestine and of the intestinal mucosa were the same, the wet weights were considerably different, indicating defective fluid balance in the infected intestine. Accumulation of glucose by the parasitized mucosa was greater than in control animals and decreased with an increase in H+ ion concentration. The glucose transport system in the parasitized gut was therefore affected at two levels, one at the brush border, where transport into the mucosa was decreased by lowering the pH, and secondly at the level of the basal and lateral membranes, where transport out of the mucosal tissue into the circulatory system was also reduced.The above results are discussed in terms of current widely accepted but erroneous concepts relating to the intestinal ‘microcosm’.  相似文献   

5.
The optimal oxygen tension for development of preimplantation mouse embryos to the blastocyst stage in vitro was found to be between 2.5% and 5%. One- and two-cell embryos had a more sharply defined range of oxygen tension capable of supporting development than 8-cell and morula stages. At all stages of development, more embryos developed to the blastocyst stage under 5% O2 compared to the numbers of developing under higher oxygen tensions (20% and 40% O2). The blastocysts developing under 20% O2 had fewer blastomeres than those which developed under 5% O2. As the time required for development to the blastocyst stage in vitro increased, there were fewer blastomeres present at the blastocyst stage. These results indicate that the cleaving mouse embryo has an optimal oxygen requirement in vitro of about 5%. At higher oxygen tensions, fewer embryos develop to the blastocyst stage and in those which do develop, there are fewer cell divisions. If a gradient of oxygen tension exists across the blastomeres from the outside of the embryo to its centre, the blastomeres might be using this gradient to obtain imformation about their location within the embryo and respond accordingly. Thus blastomeres on the outside at a higher oxygen tension would divide at a slower rate and form trophectoderm whereas those on the inside at a lower oxygen tension would divide more rapidly and contribute to the inner cell mass.  相似文献   

6.
Oxygen transport to embryos in microdrop cultures   总被引:1,自引:0,他引:1  
The standard method for culturing small preimplantation mammalian embryos is a system in which they are placed into microdrops of culture medium under oil. Thus the source of oxygen for the embryos lies beyond two liquid phases--medium and oil. If transport of oxygen is not sufficiently rapid to replace that consumed by the embryos, the medium could become depleted of oxygen. Over small distances, the dominant means by which oxygen is transported through liquid is by diffusion. Our calculations show that diffusion alone is sufficient to supply oxygen to mouse embryos; there is virtually no perturbation of the oxygen concentration when there are up to 10 embryos in the drop, and 50 embryos produce a drop in oxygen tension that is not large enough to have a deleterious effect. Furthermore, diffusion is probably not the dominant mechanism by which oxygen is transported to the embryos; on the scale of these microdrops, convection is faster and would serve to mix the drop so that anoxic regions cannot develop. Therefore, we conclude that even a relatively large number of embryos in a culture drop do not significantly deplete oxygen.  相似文献   

7.
Cardiac responses (heart rate, stroke volume, and cardiac output) to cholinergic and adrenergic receptor stimulation were investigated in developing larvae of Xenopus laevis from Nieuwkoop and Faber (NF) stage 33/34 (newly hatched) to NF stage 53 (22 d after hatching). Effects on heart rate (fH), stroke volume (SV), and cardiac output (CO) were analyzed using in situ preparations and video-microscopic techniques to record the continually beating heart. The results show that administration of acetylcholine to the heart decreases heart rate as early as NF stage 40. A significant reduction in SV and CO following acetylcholine administration to the heart was found at NF stages 45-53. Epinephrine had no significant effect on fH, SV, or CO at any of the stages investigated. However, an adrenergic tonus on the heart is present already at NF stage 40 (11%). This tonus increases up to a maximum (44%) at NF stages 45-47, when the maximal heart rate is found during development of X. laevis. We conclude that acetylcholine has a negative chronotropic and possibly also inotropic effect on the heart very early in development of X. laevis. We also hypothesize that the high adrenergic tonus found at NF stages 45-47 is responsible, at least in part, for the peak in heart rate seen at these stages.  相似文献   

8.
A theoretical two-dimensional model is used to investigate oxygen gradients in a red skeletal muscle fiber. The model describes the steady state, free and myoglobin-facilitated diffusion of oxygen into a respiring cylindrical muscle fiber cross section. The oxygen tension at the sarcolemma is assumed to vary along the sarcolemma as an approximation to the discrete capillary oxygen supply around the fiber. Maximal oxygen gradients are studied by considering parameters relevant to a maximally-respiring red muscle fiber. The model predicts that angular variations in the oxygen tension imposed at the sarcolemma due to the discrete capillary sources do not penetrate deeply into the fiber over a range of physiological values for myoglobin concentration, diffusion coefficients, number of surrounding capillaries, and oxygen tension level at the sarcolemma. Also, the oxygen tension in the core of the fiber is determined by the average oxygen tension at the sarcolemma. The drop in oxygen tension from fiber periphery to core, however, does depend significantly on the myoglobin concentration, the oxygen tension level at the sarcolemma, and the oxygen and myoglobin diffusivities. This dependence is summarized by calculating the minimum average sarcolemmal oxygen tension for maximal respiration without the development of an intracellular anoxic region. For a myoglobin-rich muscle fiber (0.5 mM myoglobin), the model predicts that maximal oxygen consumption can proceed with a relatively flat (less than 5 mm Hg) oxygen tension drop from fiber periphery to core over a large range for diffusion coefficients.  相似文献   

9.
Clark-type oxygen microelectrodes were used to measure the radial and longitudinal oxygen distribution in aerenchymatous and nonaerenchymatous primary roots of intact maize seedlings. A radial intake of oxygen from the rooting medium was restricted by embedding the roots in 1% agar causing aeration to be largely dependent upon longitudinal internal transport from the shoot. In both root types, oxygen concentrations declined with distance from the base, and were lower in the stele than in the cortex. Also, the bulk of the oxygen demand was met internally by transport from the shoots, but a little oxygen was received by radial inward diffusion from the surrounding agar, and in some positions the hypodermal layers received oxygen from both the agar and the cortex. Near to the base, the oxygen partial pressure difference between the cortex and the center of the stele could be as much as 6–8 kPa. Nearer to the tip, the differences were smaller but equally significant. In the nonaerenchymatous roots, cortical oxygen partial pressures near the apex were becoming very low (< 1 kPa) as root lengths approached 100 mm, and towards the center of the stele values reached 0.1 kPa or lower. However, the data indicated that respiratory activity did not decline until the cortical oxygen pressure was less than 2 kPa. Mathematical modeling based on Michaelis–Menten kinetics supported this and suggested that the respiratory decline would be mostly restricted to the stele until cortical oxygen pressures approached very low values. At a cortical oxygen pressure of 0.75 kPa, it was shown that respiratory activity in the pericycle and phloem might remain as high as 80–100% of maximum even though in the center of the stele it could be less than 1% of maximum. Aerenchyma production resulted in increases in oxygen concentration throughout the roots with cortical partial pressures of ca. 5–6 kPa and stelar values of ca. 3–4 kPa near the tips of 100 mm long roots. In aerenchymatous roots, there was some evidence of a decline in the oxygen permeability of the epidermal–hypodermal cylinder close to the apex; a decline in stelar oxygen permeability near the base was indicated for both root types. There was some evidence that the mesocotyl and coleoptile represented a very significant resistance to oxygen transport to the root.  相似文献   

10.
The value of mechanical ventilation using intermittent positive pressure ventilation delivered non-invasively by nasal mask was assessed in six patients with life threatening exacerbations of chronic respiratory disease. Median (range) arterial oxygen and carbon dioxide tensions were 4.4 (3.5-7.2) kPa and 8.7 (5.5-10.9) kPa respectively, with four patients breathing air and two controlled concentrations of oxygen. The arterial oxygen tension increased with mechanical ventilation to a median (range) of 8.7 (8.0-12.6) kPa and the carbon dioxide tension fell to 8.2 (6.5-9.2) kPa. Four patients discharged after a median of 10 (8-17) days in hospital were well five to 22 months later. One died at four days of worsening sputum retention and another after five weeks using the ventilator for 12-16 hours each day while awaiting heart-lung transplantation. This technique of mechanical ventilation avoids endotracheal intubation and can be used intermittently. Hypercapnic respiratory failure can be relieved in patients with either restrictive or obstructive lung disease in whom controlled oxygen treatment results in unacceptable hypercapnia. Respiratory assistance can be tailored to individual need and undertaken without conventional intensive care facilities.  相似文献   

11.
Changes in the CSF resorption resistance in relation to the value of the intracranial pressure have been assessed in 44 cats. Changes in the intracranial pressure have been produced with fluid infusions. Between 1 to 5 infusion tests with the rate 0.012-1.8 ml/min have been performed in each animal. A relationship between CSF resorption resistance and intracranial pressure has been found. With an increase in the intracranial pressure CSF resorption resistance increased to maximum value of 34 kPa/ml per minute (255.6 mm Hg/ml per minute) at pressure 2.96 +/- 0.69 kPa (22.2 +/- 5.2 mm Hg). At the intracranial pressure about 6.7 kPa (50 mm Hg) CSF resorption resistance rapidly decreased to the value of 13.9 kPa/ml per minute (104 mm Hg/ml per minute). Later, changes have been rather slight. It is possible, that the breaking point at 6.7 kPa corresponds to the mobilisation of all ways of CSF evacuation.  相似文献   

12.
The steady-state transport of oxygen through hemoglobin solutions   总被引:3,自引:3,他引:0       下载免费PDF全文
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated.  相似文献   

13.
The value of the diffusion coefficient for oxygen in muscle is uncertain. The diffusion coefficient is important because it is a determinant of the extracellular oxygen tension at which the core of muscle fibers becomes anoxic (Po(2crit)). Anoxic cores in muscle fibers impair muscular function and may limit adaptation of muscle cells to increased load and/or activity. We used Hill's diffusion equations to determine Krogh's diffusion coefficient (Dalpha) for oxygen in single skeletal muscle fibers from Xenopus laevis at 20 degrees C (n = 6) and in myocardial trabeculae from the rat at 37 degrees C (n = 9). The trabeculae were dissected from the right ventricular myocardium of control (n = 4) and monocrotaline-treated, pulmonary hypertensive rats (n = 5). The cross-sectional area of the preparations, the maximum rate of oxygen consumption (Vo(2 max)), and Po(2crit) were determined. Dalpha increased in the following order: Xenopus muscle fibers Dalpha = 1.23 nM.mm(2).mmHg(-1).s(-1) (SD 0.12), control rat trabeculae Dalpha = 2.29 nM.mm(2).mmHg(-1).s(-1) (SD 0.24) (P = 0.0012 vs. Xenopus), and hypertrophied rat trabeculae Dalpha = 6.0 nM.mm(2).mmHg(-1).s(-1) (SD 2.8) (P = 0.039 vs. control rat trabeculae). Dalpha increased with extracellular space in the preparation (Spearman's rank correlation coefficient = 0.92, P < 0.001). The values for Dalpha indicate that Xenopus muscle fibers cannot reach Vo(2 max) in vivo because Po(2crit) can be higher than arterial Po(2) and that hypertrophied rat cardiomyocytes can become hypoxic at the maximum heart rate.  相似文献   

14.
At dissolved oxygen tensions of 15 mmHg (2 kPa) and below, nitrate-limited continuous cultures of Klebsiella K312 synthesized nitrate reductase (NR) and nitrite reductase (NiR) and excreted ammonia. Under anaerobic conditions over 60% of the nitrate-nitrogen utilized was excreted as ammonia. In contrast, carbon-limited cultures excreted nitrite at dissolved oxygen tensions of 15 mmHg or below and synthesized NR but not NiR. Ammonia repressed neither NR nor NiR synthesis. These observations indicate that below a critical oxygen tension of 15 mmHg Klebsiella K312 utilizes oxygen and nitrate as electron acceptors. This oxygen tension correlates well with the critical oxygen tension observed for a change from oxidative to fermentative metabolism in cultures of Klebsiella aerogenes. The product of dissimilatory nitrate reduction is ammonia in nitrate-limited cultures but principally nitrite in carbon-limited (nitrate excess) cultures.  相似文献   

15.
Breathlessness, disability, and exercise tolerance were assessed in 26 patients with severe chronic airflow limitation (forced expiratory volume in one second (FEV1) less than or equal to 1 litre) divided into two groups--15 patients who were normocapnic (pressure of arterial carbon dioxide (Paco2) less than 5.5 kPa (less than 41.4 mm Hg)), and 11 patients who were hypercapnic (Paco2 greater than 6 kPa (greater than than 45.1 mm Hg)). The two groups were well matched for spirometric values (FEV1 0.59 1 and 0.62 1, respectively). All of the hypercapnic patients could improve blood gas tensions towards normal by hyperventilation. There were no significant differences in visual analogue scores of breathlessness during treadmill exercise, disability (oxygen-cost diagram, dyspnoea grade), or exercise tolerance (six-minute walk, maximal consumption of oxygen during bicycle ergometry, distance walked to exhaustion in progressive treadmill test). The findings show that the "fight" to maintain normal blood gas tensions in the face of severe airflow limitation does not have an appreciable cost in terms of disability.  相似文献   

16.
We studied the metabolic rate, cellular energetic state, hypoxia-inducible factor-1 (HIF-1) activation, and expression of enzymes involved in energy metabolism using rainbow trout (Oncorhynchus mykiss) hepatocytes over the oxygen range from 21 to 1 kPa. Oxygen dependence of these factors was assessed by gradually reducing oxygen supply to cells from 21 kPa to 10, 5, 2, and 1 kPa. Moreover, time course experiments for up to 20 h at oxygen tensions of 1 and 2 kPa were carried out. Reduction of oxygen from 21 kPa to 10, 5, 2, and 1 kPa decreased metabolic rate of the cells by 14, 24, 37, and 46%, respectively. This response was instantaneous and fully reversible upon reoxygenation. Cellular ATP content and the expression of all mRNAs studied decreased when oxygen was reduced from 21 to 5 and 2 kPa. The lowest ATP levels, approximately 43% of the initial value, were measured at 5 kPa of oxygen, whereas the reduction in mRNA amounts was most pronounced at 2 kPa. At 1 kPa oxygen tension, both ATP content and mRNA amounts returned to normoxic (21 kPa) levels with a concomitant activation of HIF-1, indicating reorganization of energy metabolism in adaptation of cells to low oxygen supply. These results show that oxygen has a direct regulatory effect on metabolism of trout hepatocyte cultures, supporting the view that oxygen has a profound role in metabolic regulation in cells.  相似文献   

17.
Physiological characteristics of the blood oxygen transport system and muscle metabolism indicate a high dependence on aerobic pathways in the blue gourami, Trichogaster trichopterus. Haemoglobin concentration and haematocrit were modest and the blood oxygen affinity (P50=2.31 kPa at pH 7.4 and 28 degrees C) and its sensitivity to pH (Bohr factor, phi=-0.34) favour oxygen unloading at a relatively high oxygen pressure (PO2). The intracellular buffering capacity (44.0 slykes) and lactate dehydrogenase (LDH) activity (154.3 iu g(-1)) do not support exceptional anaerobic capabilities. Air-breathing frequency in the blue gourami is expected to increase when aquatic oxygen tensions decline. Under threat of predation, however, this behaviour must be modified at a potential cost to aerobic metabolism. We therefore tested the hypothesis that metabolic responses to predatory challenge and aquatic hypoxia are subject to behavioural modulation. Computer-generated visual stimuli consistently reduced air-breathing frequency at 19.95, 6.65 and 3.33 kPa PO2. Bi-directional rates of spontaneous activity were similarly reduced. The metabolic cost of this behaviour was estimated and positively correlated with PO2 but not with visual stimulation thus indicating down-regulation of spontaneous activity rather than breath-holding behaviour. Neither PO2 nor visual stimulation resulted in significant change to muscle lactate and ATP concentrations and confirm that aerobic breath-hold limits were maintained following behavioural modulation of metabolic demands.  相似文献   

18.
Oxygen modulates the growth of skin fibroblasts   总被引:4,自引:0,他引:4  
Elevated oxygen tensions are inhibitory to the growth of skin fibroblasts. Skin fibroblasts grow better at oxygen tensions below 137 mm Hg regardless of seeding density. A wide range of oxygen tensions, including those in the physiological range, strongly modulate the growth of human skin fibroblasts. There were no significant differences between the responses of fetal and postnatal cell lines to changes in ambient oxygen tension. In all cases, higher oxygen tensions significantly impeded cell growth. Seeding cells at 10(4) cells/cm(2) afforded some protection from the deleterious effects of hyperoxia. Oxygen tensions exceeding the amount present in ambient room air also impeded cell growth at this higher seeding density, but the effect did not become significant until the oxygen partial pressure reached 241 mm Hg. At lower oxygen tensions, cells seeded at 10(3) cells/cm(2) grew more rapidly than did cells seeded at 10(4) cells/cm(2). These findings may have implications for the treatment of poorly healing wounds with hyperbaric oxygen.  相似文献   

19.
The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently until they disappeared from view at a net disappearance rate (0.02 mm(2) × min(-1)) significantly faster than for similar bubbles at 25 kPa altitude (0.01 mm(2) × min(-1)). At 25 kPa, most bubbles initially grew for 2-40 min, after which they shrank and disappeared. Four bubbles did not disappear while at 25 kPa. The results support bubble kinetic models based on Fick's first law of diffusion, Boyles law, and the oxygen window effect, predicting that oxygen contributes more to bubble volume and growth during hypobaric conditions. As the effect of oxygen increases, the lower the ambient pressure. The results indicate that recompression is instrumental in the treatment of aDCS.  相似文献   

20.
The ammonia oxidation rate by sewage sludge was determined as a function of the dissolved oxygen tension. Samples of sludge were taken from a domestic waste water treatment pilot plant in which sludge was completely retained by membrane filtration. The samples were subcultured chemolithotrophically in recycling reactors. The gas supplied was a mixture of pure argon and oxygen. The K O2 for ammonia oxidation was estimated to be 0.97 (±0.16) kPa dissolved oxygen. Together with ammonia oxidation and oxygen consumption, dinitrogen gas was produced. So, aerobic denitrification occurred. At dissolved oxygen tensions of 1.25 kPa and higher, the dinitrogen production rate (per N-mole) equalled 20% of the ammonia oxidation rate. This proportion was even 58% at 0.3 kPa dissolved oxygen. At 0.15 kPa dissolved oxygen, however, nitrification hardly proceeded, while dinitrogen production soon stopped. Most likely, a nitrifier concomitantly oxidized ammonia and reduced nitrite to dinitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号