共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylose reductase catalyzes the NAD(P)H-dependent reduction of xylose to xylitol and is essential for growth on xylose by yeasts. To understand the nature of coenzyme binding to the Pichia stipitis xylose reductase, we investigated the role of the strictly conserved Lys270 in the putative IPKS coenzyme binding motif by site-directed mutagenesis. The Lys270Met variant exhibited lower enzyme activity than the wild-type enzyme. The apparent affinity of the variant for NADPH was decreased 5–16-fold, depending on the substrate used, while the apparent affinity for NADH, measured using glyceraldehyde as the substrate, remained unchanged. This resulted in 4.3-fold higher affinity for NADH over NADPH using glyceraldehyde as the substrate. The variant also showed a 14-fold decrease in Km for xylose, but only small changes were observed in Km values for glyceraldehyde. The wild-type enzyme, but not the Lys270Met variant, was susceptible to modification by the Lys-specific pyridoxal 5′-phosphate. Results of our chemical modification and site-directed mutagenesis study indicated that Lys270 is involved in both NADPH and d-xylose binding in the P. stipitis xylose reductase. 相似文献
2.
恶臭假单胞菌扁桃酸消旋酶的Val22位于20 s环状结构上, 是与底物结合相关的氨基酸之一。其中Val被替换为Arg后酶活性下降了75.9%。除了酶与底物疏水作用减弱以外, 静电排斥作用增强也可能引起活性的下降。利用分子动力学模拟对酶与底物的米氏复合物进行分析, 结果表明: 突变后第22位氨基酸侧链与底物的静电势从0.036 kJ/mol升高至0.124 kJ/mol。这说明氨基酸侧链极性的改变增加了侧链与底物分子之间的静电排斥作用, 因而静电排斥作用也是导致突变体活性下降的原因之一。同时, 突变后系统势能增加了283 kJ/mol, 进一步证实了第22位氨基酸侧链极性和带电性质的改变导致酶与底物结合状态的势能增大, 从而引起活性大幅下降。因此, 将来对酶的结合口袋区域进行理性设计时, 除了考虑空间位阻效应外, 还需考虑疏水作用和静电作用。 相似文献
3.
Chiung-Kuang J. Chen Tatiana Kh. Shokhireva Robert E. Berry Hongjun Zhang F. Ann Walker 《Journal of biological inorganic chemistry》2008,13(5):813-824
CYP102A1 is a highly active water-soluble bacterial monooxygenase that contains both substrate-binding heme and diflavin reductase subunits, all in a single polypeptide that has been called a "self-sufficient enzyme." Several years ago we developed a procedure called "scanning chimeragenesis," where we focused on residues 73-82 of CYP102A1, which contact approximately 40% of the substrates palmitoleic acid and N-palmitoylglycine [Murataliev et al. (2004) Biochemistry 43:1771-1780]. These residues were replaced with the homologous residues of CYP4C7. In the current work, that study has been expanded to include residue 87. Phenylalanine 87 of wild-type CYP102A1 was replaced with the homologous residue of CYP4C7, leucine, as well as with alanine. The full-sized chimeric proteins C(73-78, F87L), C(73-78, F87A), C(75-80, F87L), C(75-80, F87A), C(78-82, F87L) and C(78-82, F87A) have been purified and characterized. Wild-type CYP102A1 is most active toward fatty acids (both lauric and palmitic acids produce omega-1, omega-2, and omega-3 hydroxylated fatty acids), but it also catalyzes the oxidation of farnesol to three products (2, 3- and 10,11-epoxyfarnesols and 9-hydroxyfarnesol). All of the F87-mutant chimeric proteins show dramatic decreases in activities with the natural CYP102A1 substrates. In contrast, C(78-82, F87A) and C(78-82, F87L) have markedly increased activities with farnesol, with the latter showing a 5.7-fold increase in catalytic activity as compared to wild-type CYP102A1. C(78-82, F87L) produces 10,11-epoxyfarnesol as the single primary metabolite. The results show that chimeragenesis involving only the second half of SRS-1 plus F87 is sufficient to change the substrate selectivity of CYP102A1 from fatty acids to farnesol and to produce a single primary product. 相似文献
4.
Ekaterina V. Sokerina G. Matthias Ullmann Gertie van Pouderoyen Gerard W. Canters N. M. Kostić 《Journal of biological inorganic chemistry》1999,4(1):111-121
We study, by laser flash photolysis, the effects of ionic strength on the kinetics of the reaction 3Zncyt + az(II) → Zncyt+ + az(I), i.e., oxidative quenching of the triplet state of zinc cytochrome c by the wild-type form and the following three mutants of cupriazurin: Met44Lys, Met64Glu, and the double mutant Met44Lys/Met64Glu. Mutations in the hydrophobic patch of azurin significantly affect the reactivity of the protein with the triplet state of zinc cytochrome c. Dependence on the ionic strength of the bimolecular rate constant for the aforementioned reaction is analyzed by several electrosatic models. The two transition-state theories, Brønsted-Debye-Hückel and van Leeuwen theories, allow the best approximation to the experimental data when effective charges of the proteins are used. Protein-protein interactions are also analyzed in terms of local charges on the protein surfaces. The rate constants depend little on ionic strength, and the monopolar and dipolar electrostatic interactions between zinc cytochrome c and azurin are not well resolved. Semiquantitative analysis of electrostatic interactions indicates that azurin uses its hydrophobic patch for contact with zinc cytochrome c. 相似文献
5.
Sousa PM Silva ST Hood BL Charro N Carita JN Vaz F Penque D Conrads TP Melo AM 《Biochimie》2011,93(3):418-425
The organization of respiratory chain complexes in supercomplexes has been shown in the mitochondria of several eukaryotes and in the cell membranes of some bacteria. These supercomplexes are suggested to be important for oxidative phosphorylation efficiency and to prevent the formation of reactive oxygen species.Here we describe, for the first time, the identification of supramolecular organizations in the aerobic respiratory chain of Escherichia coli, including a trimer of succinate dehydrogenase. Furthermore, two heterooligomerizations have been shown: one resulting from the association of the NADH:quinone oxidoreductases NDH-1 and NDH-2, and another composed by the cytochrome bo3 quinol:oxygen reductase, cytochrome bd quinol:oxygen reductase and formate dehydrogenase (fdo). These results are supported by blue native-electrophoresis, mass spectrometry and kinetic data of wild type and mutant E . coli strains. 相似文献
6.
7.
Elisabetta Zennaro Ilaria Ciabatti Francesca Cutruzzola Rosanna D'Alessandro Maria Chiara Silvestrini 《FEMS microbiology letters》1993,109(2-3):243-250
Abstract The expression of nitrite reductase has been tested in a wild-type strain of Pseudomonas aeruginosa (Pao1) as a function of nitrate concentration under anaerobic and aerobic conditions. Very low levels of basal expression are shown under non-denitrifying conditions (i.e. absence of nitrate, in both aerobic and anaerobic conditions); anaerobiosis is not required for high levels of enzyme production in the presence of nitrate. A Pseudomonas aeruginosa strain, mutated in the nitrite reductase gene, has been obtained by gene replacement. This mutant, the first of this species described up to now, is unable to grow under anaerobic conditions in the presence of nitrate. The anaerobic growth can be restored by complementation with the wild-type gene. 相似文献
8.
Salem Faham Tadashi J. Mizoguchi Elinor T. Adman Harry B. Gray John H. Richards D. C. Rees 《Journal of biological inorganic chemistry》1997,2(4):464-469
Replacement of the cysteine at position 112 of Pseudomonas aeruginosa azurin with an aspartic acid residue results in a mutant (Cys112Asp) protein that retains a strong copper-binding site. CuII(Cys112Asp) azurin can be reduced by excess [RuII(NH3)6]2+, resulting in a CuI protein with an electronic absorption spectrum very similar to that of wild-type CuI azurin. Cys112Asp azurin exhibits reversible interprotein electron-transfer reactivity with P. aeruginosa cytochrome c 551 (μ?=?0.1?M sodium phosphate (pH?7.0);E°(CuII/I)?=?180 mV vs NHE); this redox activity indicates that electrons can still enter and exit the protein through the partially solvent-exposed imidazole ring of His117. The structure of CuII(Cys112Asp) azurin at 2.4-Å resolution shows that the active-site copper is five coordinate: the pseudo-square base of the distorted square-pyramidal structure is defined by the imidazole Nδ atoms of His46 and His117 and the oxygen atoms of an asymmetrically-bound bidentate carboxylate group of Asp112; the apical position is occupied by the oxygen atom of the backbone carbonyl group of Gly45. The CuII–Asp112 interaction is distinguished by an approximately 1.2-Å displacement of the metal center from the plane defined by the Asp112 carboxylate group. 相似文献
9.
Flavodoxin (Fld) is a bacterial electron-transfer protein that possesses flavin mononucleotide as a prosthetic group. In the genomes of the Pseudomonas species, the mioC gene is the sole gene, annotated Fld, but its function remains unclear. In this study, phenotype microarray analysis was performed using the wild-type and mioC mutant of pathogenic Pseudomonas aeruginosa PAO1. Our results showed that the mioC mutant is very resistant to oxidative stress. Different antibiotics and metals worked differently on the sensitivity of the mutant. Other pleiotropic effects of mutation in the mioC gene, such as biofilm formation, aggregation ability, motility and colony morphology, were observed under iron stress conditions. Most of the phenotypic and physiological changes could be recovered in the wild type by complementation. Mutation of the mioC gene also influenced the production of pigments. The mioC mutant and mioC over-expressed complementation cells, over-produced pyocyanin and pyoverdine, respectively. Various secreted chemicals were also changed in the mutant, which was confirmed by (1) H NMR analysis. Interestingly, physiological alterations of the mutant strain were restored by the cell-free supernatant of the wild type. The present study demonstrates that the mioC gene plays an important role in the physiology of P.?aeruginosa and might be considered as a suitable drug target candidate in pathogenic P.?aeruginosa. 相似文献
10.
Susan M. Howitt 《生物化学与生物物理学报:生物膜》2005,1669(2):95-100
We investigated the role of cysteine residues in the sulphate transporter, SHST1, with the aim of generating a functional cysteine-less variant. SHST1 contains five cysteine residues and none was essential for function. However, replacement of C421 resulted in a reduction in transport activity. Sulphate transport by C205 mutants was dependent on the size of the residue at this position. Alanine at position 205 resulted in a complete loss of function whereas leucine resulted in a 3-fold increase in sulphate transport relative to wild type SHST1. C205 is located in a putative intracellular loop and our results suggest that this loop may be important for sulphate transport. By replacing C205 with leucine and the other four cysteine residues with alanine, we constructed a cysteine-less variant of SHST1 that has transport characteristics indistinguishable from wild type. This construct will be useful for further structure and function studies of SHST1. 相似文献
11.
González-Segura L Velasco-García R Rudiño-Piñera E Mújica-Jiménez C Muñoz-Clares RA 《Biochimie》2005,87(12):1056-1064
Betaine aldehyde dehydrogenase (BADH) from the human pathogen Pseudomonas aeruginosa is a tetrameric enzyme that contains a catalytic Cys286 and three additional cysteine residues, Cys353, 377, and 439, per subunit. In the present study, we have investigated the role of the three non-essentials in enzyme activity and stability by homology modeling and site-directed mutagenesis. Cys353 and Cys377 are located at the protein surface with their sulfur atoms buried, while Cys439 is at the subunit interface between the monomers forming a dimeric pair. All three residues were individually mutated to alanine and Cys439 also to serine and valine. The five mutant proteins were expressed in Escherichia coli and purified to homogeneity. Their steady-state kinetics was not significantly affected, neither was their structure as indicated by circular dicroism spectropolarimetry, protein intrinsic fluorescence, and size-exclusion chromatography. However, stability was severely reduced in the Cys439 mutants particularly in C439S and C439V, which were inactive when expressed at 37 degrees C. They also exhibited higher sensitivity to thermal and chemical inactivation, and higher propensity to dissociation by dilution or exposure to low ionic strength than the wild-type enzyme. Size-exclusion chromatography indicates that substitution of Cys439 lead to unstable dimers or to stable dimeric conformations not compatible with a stable tetrameric structure. To the best of our knowledge, this is the first study of an aldehyde dehydrogenase revealing a residue at the dimer interface involved in holding the dimer, and consequently the tetramer, together. 相似文献
12.
用点突变的方法将大肠杆菌精氨酰—tRNA合成酶(ArgRS)的基因args上相应于Lys378和Lys381的密码AAA分别变为两氨酸的密码GCA和精氨酸的密码子CGT,得到了4个args的突变体args378KA,args378KR,args381KA和args381KR,将它们分别连接到pUC18上,转入大肠杆菌TG1,在TG1转化子中,ArgRS及其变种的表达量约为TG1中的120倍以上。结果表明Lys378为Arg和Ala取代分别使活力下降0%和10%;Lys381变为Ala和Arg后,活力分别下降33%和10%左右。Lys378不为酶活力必需。Lys381部位的正电荷对酶活力是重要的。 相似文献
13.
Okochi N Kato-Murai M Kadonosono T Ueda M 《Applied microbiology and biotechnology》2007,77(3):597-603
Lc-WT, the wild-type light chain of antibody, and Lc-Triad, its double mutant with E1D and T27aS designing for the construction
of catalytic triad within Asp1, Ser27a, and original His93 residues, were displayed on the cell surface of the protease-deficient
yeast strain BJ2168. When each cell suspension was reacted with BODIPY FL casein and seven kinds of peptide-MCA substrates,
respectively, a remarkable difference in hydrolytic activities toward Suc-GPLGP-MCA (succinyl-Gly-Pro-Leu-Gly-Pro-MCA), a
substrate toward collagenase-like peptidase, was observed between the constructs: Lc-Triad-displaying cells showed higher
catalytic activity than Lc-WT-displaying cells. The difference disappeared in the presence of the serine protease inhibitor
diisopropylfluorophosphate, suggesting that the three amino acid residues, Ser27a, His93, and Asp1, functioned as a catalytic
triad responsible for the proteolytic activity in a similar way to the anti-vasoactive intestinal peptide (VIP) antibody light
chain. A serine protease-like catalytic triad (Ser, His, and Asp) is considered to be directly involved in the catalytic mechanism
of the anti-VIP antibody light chain, which moderately catalyzes the hydrolysis of VIP. These results suggest the possibility
of new approach for the creation of tailor-made proteases beyond limitations of the traditional immunization approach. 相似文献
14.
The relationship between respiratory chain redox carrier composition and the efficiency of aerobic growth in continuous culture under carbon-limited conditions has been investigated for nine species of bacteria.True molar growth yields with respect to molecular oxygen (
) or dissimilated carbon source (Y
substrate ox.
max
) were not significantly affected by the nature either of the major quinone component (ubiquinone or menaquinone), of the major cytochrome oxidase moiety (cytochrome aa
3 or o) or of the transhydrogenase segment (energy-dependent transhydrogenase, energy-independent transhydrogenase or no transhydrogenase), but were significantly influenced by the presence or absence of a high potential, membrane-bound cytochrome c. Under glycerol-limited conditions the presence of cytochrome c raised the average
from 51.1 to 84.3 g cells · mole O
2
–1
, and the average Y
glycerol ox.
max
from 154.6 to 233.2 g cells · mole glycerol oxidised–1; the presence of this redox carrier also elicited increases in
and Y
substrate ox.
max
of a similar order during growth under lactate, and glucose-limited conditions.The average efficiencies of aerobic energy conservation calculated from these true molar growth yields were 3.4 mole ATP equivalents · mole O
2
–1
for organisms with respiratory chains which were deficient in cytochrome c and 5.9 mole ATP equivalents · mole O
2
–1
for organisms with respiratory chains which contained cytochrome c.It is concluded from these data, and from parallel measurements of whole cell H+/O ratios, that bacterial respiratory systems invariably exhibit energy conservation at sites 1 and 2 but that the presence of a highpotential, membrane-bound cytochrome c is an obligatory prerequisite for energy conservation at site 3. 相似文献
15.
16.
Kunihiro Kuwajima Naoki Okayama Kaori Yamamoto Tsuyoshi Ishihara Shintaro Sugai 《FEBS letters》1991,290(1-2)
Kinetics of unfolding and refolding of a staphylococcal nuclease mutant, in which Pro117 is replaced by glycine, have been investigated by stopped-flow circular dichroism, and the results are compared with those for the wild-type protein. In contrast to the biphasic unfolding of the wild-type nuclease, the unfolding of the mutant is represented by a single-phase reaction, indicating that the biphasic unfolding for the wild-type protein is caused by cis-trans isomerization about the prolyl peptide bond in the native state. The proline mutation also simplifies the kinetic refolding. Importance of the results in elucidating the folding mechanism is discussed. 相似文献
17.
18.
1. Acetylcolletotrichin is a phytotoxic compound that has been isolated from the culture medium of the fungus Colletotrichum capsici (Grove et al., 1966). 2. With isolated liver and kidney mitochondria acetylcolletotrichin markedly inhibited the oxidation of succinate and those substrates with NAD-linked dehydrogenases, but did not inhibit the oxidation of ascorbate in the presence of tetramethyl-p-phenylenediamine. In this respect its action was similar to that of antimycin A. 3. Acetylcolletotrichin differed from antimycin in that, even at high concentrations which produced a maximal inhibitory effect, its action was partially reversed by uncoupling agents. Also acetylcolletotrichin had no detectable effect on the oxidative activity of blowfly flight-muscle mitochondria and was not very effective with heart mitochondria. 4. Acetylcolletotrichin inhibited the oxidative activity of liver mitochondria more markedly when respiration was stimulated by ADP together with phosphate and was less effective when respiration was stimulated by uncoupling agents. 5. There was an unusual interaction between the succinate oxidation system and the oxidation of glutamate together with malate. Thus, glutamate together with malate, even in the presence of rotenone, markedly decreased the effectiveness of acetylcolletotrichin in inhibiting succinate oxidation. 6. These effects were paralleled in the observed redox changes of cytochrome c. 7. The unusual behaviour of the cytochromes b in the presence of acetylcolletotrichin is described, and it is suggested tentatively that this inhibitor acts between cytochromes b with absorption maxima at 30 degrees C of approximately 560 and 565nm. 相似文献
19.
20.
Summary The expression of infC, the structural gene for translational initiation factor IF3, has been studied in different constructs under the control of the PL and tac promoters. The amount of synthesized IF3 has been determined by a quantitative functional test and the levels of IF3-specific mRNA have been estimated. The synthesis of IF3 is strongly enhanced when the unusual AUU initiation codon is changed to AUG by site-directed mutagenesis. Removal of the sequence upstream from the start codon including most of the Shine-Dalgarno sequence, as well as part of a 10 bp region with potential complementarity to an internal region of the 16S rRNA, which is unique to the IF3 mRNA, reduced but did not completely abolish the high expression of infC obtained after introduction of the AUG initiation codon. The level of IF3 mRNA was found to be positively influenced by the presence of the rplT gene in the plasmid downstream from the infC gene. In vivo accumulation of a large excess of IF3, obtained when the infC gene was placed under the control of an incompletely repressed tac promoter, was not accompanied by any noticeable adverse phenotype. 相似文献