首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The double-stranded RNA (dsRNA)-dependent protein kinase DAI (also termed dsI and P1) possesses two kinase activities; one is an autophosphorylation activity, and the other phosphorylates initiation factor eIF-2. We purified the enzyme, in a latent form, to near homogeneity from interferon-treated human 293 cells. The purified enzyme consisted of a single polypeptide subunit of approximately 70,000 daltons, retained its dependence on dsRNA for activation, and was sensitive to inhibition by adenovirus VA RNAI. Autophosphorylation required a suitable concentration of dsRNA and was second order with respect to DAI concentration, which suggests an intermolecular mechanism in which one DAI molecule phosphorylates a neighboring molecule. Once autophosphorylated, the enzyme could phosphorylate eIF-2 but seemed unable to phosphorylate other DAI molecules, which implies a change in substrate specificity upon activation. VA RNAI blocked autophosphorylation and activation but permitted the activated enzyme to phosphorylate eIF-2. VA RNAI also blocked the binding of dsRNA to the enzyme. The data are consistent with a model in which activation requires the interaction of two molecules of DAI with dsRNA, followed by intermolecular autophosphorylation of the latent enzyme. VA RNAI would block activation by preventing the interaction between DAI and dsRNA.  相似文献   

2.
Bacteriophage RNA polymerases are widely used to synthesize defined RNAs on a large scale in vitro. Unfortunately, the RNA product contains a small proportion of contaminating RNAs, including complementary species, which can lead to errors of interpretation. We cloned the gene encoding Ad2 VA RNAI into a vector containing a T7 RNA polymerase promoter in order to generate large quantities of VA RNA for the study of its interaction with the dsRNA-dependent protein kinase DAI. Exact copies of VA RNAI were synthesized efficiently, but were contaminated with small amounts of dsRNA which activated DAI and confounded interpretation of kinase assays. We therefore developed a method to remove the dsRNA contaminants, allowing VA RNAI and mutants to be tested for their ability to activate or inhibit DAI. This method appears to be generally applicable.  相似文献   

3.
4.
Adenovirus virus-associated (VA) RNAI is required for efficient protein synthesis at late times of adenoviral infection, and in some other situations where double-stranded RNA (dsRNA) is present. It prevents inhibition of protein synthesis by a dsRNA-activated protein kinase and the secondary structure of VA RNAI is though to be important for its activity. To test this idea and to define structures and sequences responsible for VA RNAI activity, we constructed several mutant VA RNA genes and tested them in a transient expression assay. Activity is unaffected by deletions within a small region near the center of the gene, nt 72-85, but it is greatly diminished by deletion or substitution of sequences on the 3' side of this region. The structures of wild-type and mutant RNAs were examined by nuclease-sensitivity analysis. We propose a model for wild-type VA RNAI which differs from that predicted to be the most stable structure. Surprisingly disruption of the longest duplex region in the molecule is tolerated, provided that adjacent structural elements are not rearranged. However, perturbations of elements located in the center of the structure correlate well with loss of function.  相似文献   

5.
Protein synthesis in adenovirus-infected cells is regulated during the late phase of infection. The rate of initiation is maintained by a small viral RNA, virus-associated (VA) RNAI, which prevents the phosphorylation of eukaryotic initiation factor eIF-2 by a double-stranded RNA-activated protein kinase, DAI. On the basis of nuclease sensitivity analysis, a secondary-structure model was proposed for VA RNA. The model predicts a complex stem-loop structure in the central part of the molecule, the central domain, joining two duplexed stems. The central domain is required for the inhibition of DAI activation and participates in the binding of VA RNA to DAI. To assess the significance of the postulated stem-loop structure in the central domain, we generated compensating, deletion, and substitution mutations. A substitution mutation which disrupts the structure in the central domain abolishes VA RNA function in vitro and in vivo. Base-compensating mutations failed to restore the function or structure of the mutant, implying that the stem-loop structure may not exist. To confirm this observation, we tested mutants with alterations in the hypothetical loop and short stem that constitute the main features of the wild-type model structure. The upper part of the hypothetical loop could be deleted without abolishing the ability of the RNA to block DAI activation in vitro, whereas other loop mutations were deleterious for function and caused major rearrangements in the molecule. Base-compensating mutations in the stem did not restore the expected base pairing, even though the mutant RNAs were still functional in vitro. Surprisingly, a mutant with a noncompensating substitution mutation in the stem was more effective than wild-type VA RNAI in DAI inhibition assays but was ineffective in vivo. The structural and functional consequences of these mutations do not support the proposed model structure for the central domain, and we therefore suggest an alternative structure in which tertiary interactions may play a significant role in shaping the specificity of VA RNA function in the infected cell. Discrepancies between the functionality of mutant forms of VA RNA in vivo and in vitro are consistent with the existence of additional roles for VA RNA in the cell.  相似文献   

6.
M B Mathews 《Enzyme》1990,44(1-4):250-264
The initiation of protein synthesis in adenovirus-infected cells is regulated during the late phase in two ways, which may be related. The overall translation rate is maintained by a small viral RNA, VA RNAI, which prevents the phosphorylation of initiation factor eIF-2 by a double-stranded RNA-activated protein kinase, DAI. In addition, the relative efficiency of translation of host cell and viral mRNA populations is regulated in the infected cell during the late phase such that viral mRNAs are selectively utilized. Three viral elements have been implicated in this process: the 5' leader present on most late viral mRNAs; the late protein, 100K; and VA RNA. This article reviews the mechanisms underlying these translational control phenomena.  相似文献   

7.
K H Mellits  M Kostura  M B Mathews 《Cell》1990,61(5):843-852
Adenovirus VA RNAL maintains protein synthesis by preventing activation of the double-stranded RNA (dsRNA)-dependent protein kinase DAI. There appears to be a single binding site for dsRNA on DAI, and this site is blocked by VA RNAl. VA RNAl binds to purified DAI and can be cross-linked to the enzyme by UV irradiation. To determine the relationship between DAI binding and VA RNAl structure and function, we examined the binding abilities of wild-type and mutant VA RNAs. In several cases, the ability to bind DAI efficiently in vitro did not correlate with function in vivo. Secondary structure analysis suggested that efficient binding requires an apical stem-loop structure, whereas inhibition of DAI activation requires the central domain of the VA RNA molecule. We propose that the duplex stem permits VA RNA to interact with the dsRNA binding site on DAI and inhibits activation by juxtaposing the central domain of the RNA with the enzyme's active site.  相似文献   

8.
The double-stranded RNA activated protein kinase DAI contains an RNA binding domain consisting of two copies of a double-stranded RNA binding motif. We have investigated the role of RNA structure in the interaction between DAI and the structured single-stranded RNA, adenovirus VA RNAI, which inhibits DAI activation. Mutations in the apical stem, terminal stem, and central domain of the RNA were tested to assess the contribution of these elements to DAI binding in vitro. The data demonstrate that over half a turn of intact apical stem is required for the interaction and that there is a correlation between the binding of apical stem mutants and their ability to function both in vivo and in vitro. There was also evidence of preference for GC-rich sequence in the proximal region of the apical stem. In the central domain the correlation between binding and function of mutant RNAs was poor, suggesting that at least some of this region plays no direct role in binding to DAI, despite its functional importance. Exceptionally, central domain mutations that encroached on the phylogenetically conserved stem 4 of VA RNA disrupted binding, and complementary mutations in this sequence partially restored binding. Measurement of the binding of wild-type VA RNAI to DAI and p20, a truncated form of the protein containing the RNA binding domains alone, under various ionic conditions imply that the major interactions are electrostatic and occur via the protein's RNA binding domain. However, differences between full-length DAI and p20 in their binding to mutants in the conserved stem suggest that regions outside the RNA binding domain also participate in the binding. The additional interactions are likely to be non-ionic, and may be important for preventing DAI activation during virus infection.  相似文献   

9.
The protein kinase DAI, the double-stranded RNA activated inhibitor of translation (also known as PKR), regulates cell growth, virus infection, and other processes. DAI represents a class of proteins containing a recently recognized RNA binding motif, the dsRBM, but little is known about the contacts between these proteins and their RNA ligands. In adenovirus-infected cells, DAI activation is prevented by VA RNAI, a highly structured RNA that binds to the kinase. VA RNA contains three chief structural features: a terminal stem, an apical stem-loop, and a complex central domain. We used enzymatic and chemical footprinting to identify the interactions between DAI and VA RNAI. DAI protects the proximal part of the apical stem structure, an adjacent region in the central domain, and a region surrounding a conserved stem in the central domain from nuclease attack. During binding the RNA undergoes a conformational change that is mainly restricted to the central domain. A similar change is induced by magnesium ions alone. Footprinting and interference binding assays using base-specific chemical probes suggest that the protein does not make major contacts with RNA bases. On the other hand, footprinting with probes specific for the RNA backbone shows that DAI engages in a strong interaction with the minor groove of the apical stem and a weaker interaction in the central domain. A truncated form of DAI, p20, containing only the RNA binding domain, gives a similar protection pattern in the apical stem but protects the central domain less effectively. We conclude that the RNA binding domain of DAI interacts directly with the apical stem and central domain of VA RNA, and that other regions of the protein contribute to interactions with the central domain.  相似文献   

10.
The protein kinase DAI is activated upon viral infection of mammalian cells and inhibits protein synthesis by phosphorylation of the alpha subunit of translation initiation factor 2 (eIF-2 alpha). DAI is activated in vitro by double-stranded RNAs (dsRNAs), and binding of dsRNA is dependent on two copies of a conserved sequence motif located N terminal to the kinase domain in DAI. High-level expression of DAI in Saccharomyces cerevisiae cells is lethal because of hyperphosphorylation of eIF-2 alpha; at lower levels, DAI can functionally replace the protein kinase GCN2 and stimulate translation of GCN4 mRNA. These two phenotypes were used to characterize structural requirements for DAI function in vivo, by examining the effects of amino acid substitutions at matching positions in the two dsRNA-binding motifs and of replacing one copy of the motif with the other. We found that both copies of the dsRNA-binding motif are required for high-level kinase function and that the N-terminal copy is more important than the C-terminal copy for activation of DAI in S. cerevisiae. On the basis of these findings, we conclude that the requirements for dsRNA binding in vitro and for activation of DAI kinase function in vivo closely coincide. Two mutant alleles containing deletions of the first or second binding motif functionally complemented when coexpressed in yeast cells, strongly suggesting that the active form of DAI is a dimer. In accord with this conclusion, overexpression of four catalytically inactive alleles containing different deletions in the protein kinase domain interfered with wild-type DAI produced in the same cells. Interestingly, three inactivating point mutations in the kinase domain were all recessive, suggesting that dominant interference involves the formation of defective heterodimers rather than sequestration of dsRNA activators by mutant enzymes. We suggest that large structural alterations in the kinase domain impair an interaction between the two protomers in a DAI dimer that is necessary for activation by dsRNA or for catalysis of eIF-2 alpha phosphorylation.  相似文献   

11.
Adenovirus virus-associated (VA) RNAI maintains efficient protein synthesis during the late phase of infection by preventing the activation of the double-stranded-RNA-dependent protein kinase, DAI. A secondary structure model for VA RNAI predicts the existence of two stems joined by a complex stem-loop structure, the central domain. The structural consequences of mutations and compensating mutations introduced into the apical stem lend support to this model. In transient expression assays for VA RNA function, foreign sequences inserted into the apical stem were fully tolerated provided that the stem remained intact. Mutants in which the base of the apical stem was disrupted retained partial activity, but truncation of the apical stem abolished the ability of the RNA to block DAI activation in vitro, suggesting that the length and position of the stem are both important for VA RNA function. These results imply that VA RNAI activity depends on secondary structure at the top of the apical stem as well as in the central domain and are consistent with a two-step mechanism involving DAI interactions with both the apical stem and the central domain.  相似文献   

12.
The interferon-induced protein kinase DAI, the double-stranded RNA (dsRNA)-activated inhibitor of translation, plays a key role in regulating protein synthesis in higher cells. Once activated, in a process that involves autophosphorylation, it phosphorylates the initiation factor eIF-2, leading to inhibition of polypeptide chain initiation. The activity of DAI is controlled by RNA regulators, including dsRNA activators and highly structured single-stranded RNAs which block activation by dsRNA. To elucidate the mechanism of activation, we studied the interaction of DAI with RNA duplexes of discrete sizes. Molecules shorter than 30 bp fail to bind stably and do not activate the enzyme, but at high concentrations they prevent activation by long dsRNA. Molecules longer than 30 bp bind and activate the enzyme, with an efficiency that increases with increasing chain length, reaching a maximum at about 85 bp. These dsRNAs fail to activate at high concentrations and also prevent activation by long dsRNA. Analysis of complexes between dsRNA and DAI suggests that at maximal packing the enzyme interacts with as little as a single helical turn of dsRNA (11 bp) but under conditions that allow activation the binding site protects about 80 bp of duplex. When the RNA-binding site is fully occupied with an RNA activator, the complex appears to undergo a conformational change.  相似文献   

13.
COS cells transfected with plasmids that activate DAI depend on expression of virus-associated I (VAI) RNA to prevent the inhibitory effects of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) kinase (DAI) and restore the translation of vector-derived dihydrofolate reductase mRNA. This VAI RNA requirement could be completely replaced by reovirus polypeptide sigma 3, consistent with its double-stranded RNA (dsRNA)-binding activity. S4 gene transfection of 293 cells also partially restored adenovirus protein synthesis after infection with the VAI-negative dl331 mutant. In dl331-infected 293 cells, eIF-2 alpha was present mainly in the acidic, phosphorylated form, and trans complementation with polypeptide sigma 3 or VAI RNA decreased the proportion of eIF-2 alpha (P) from approximately 85 to approximately 30%. Activation of DAI by addition of dsRNA to extracts of S4 DNA-transfected COS cells required 10-fold-higher levels of dsRNA than extracts made from cells that were not producing polypeptide sigma 3. In extracts of reovirus-infected mouse L cells, the concentration of dsRNA needed to activate DAI was dependent on the viral serotype used for the infection. Although the proportion of eIF-2 alpha (P) was greater than that in uninfected cells, most of the factor remained in the unphosphorylated form, even at 16 h after infection, consistent with the partial inhibition of host protein synthesis observed with all three viral serotypes. The results indicate that reovirus polypeptide sigma 3 participates in the regulation of protein synthesis by modulating DAI and eIF-2 alpha phosphorylation.  相似文献   

14.
Ethanol exposure inhibits protein synthesis and causes cell death in the developing central nervous system. The double-stranded RNA (dsRNA)-activated protein kinase (PKR), a serine/threonine protein kinase, plays an important role in translational regulation and cell survival. PKR has been well known for its anti-viral response. Upon activation by viral infection or dsRNA, PKR phosphorylates its substrate, the alpha-subunit of eukaryotic translation initiation factor-2 (eIF2alpha) leading to inhibition of translation initiation. It has recently been shown that, in the absence of a virus or dsRNA, PKR can be activated by direct interactions with its protein activators, PACT, or its mouse homologue, RAX. We have demonstrated that exposure to ethanol increased the phosphorylation of PKR and eIF2alpha in the developing cerebellum. The effect of ethanol on PKR/eIF2alpha phosphorylation positively correlated to the expression of PACT/RAX in cultured neuronal cells. Using PKR inhibitors and PKR null mouse fibroblasts, we verified that ethanol-induced eIF2alpha phosphorylation was mediated by PKR. Overexpression of a wild-type RAX dramatically enhanced sensitivity to ethanol-induced PKR/eIF2alpha phosphorylation, as well as translational inhibition and cell death. In contrast, overexpression of a mutant (S18A) RAX inhibited ethanol-mediated PKR/eIF2alpha activation. Ethanol promoted PKR and RAX association in cells expressing wild-type RAX but not in cells expressing S18A RAX. S18A RAX functioned as a dominant negative protein and blocked ethanol-induced inhibition of protein synthesis and cell death. Our results suggest that the interactions between PKR and PACT/RAX modulate the effect of ethanol on protein synthesis and cell survival in the central nervous system.  相似文献   

15.
16.
The vaccinia virus E3L gene codes for double-stranded RNA (dsRNA) binding proteins which can prevent activation of the dsRNA-dependent, interferon-induced protein kinase PKR. Activated PKR has been shown to induce apoptosis in HeLa cells. HeLa cells infected with vaccinia virus with the E3L gene deleted have also been shown to undergo apoptosis, whereas HeLa cells infected with wild-type vaccinia virus do not. In this report, using virus recombinants expressing mutant E3L products or alternative dsRNA binding proteins, we show that suppression of induction of apoptosis correlates with functional binding of proteins to dsRNA. Infection of HeLa cells with ts23, which leads to synthesis of increased dsRNA at restrictive temperature, induced apoptosis at restrictive but not permissive temperatures. Treatment of cells with cytosine arabinoside, which blocks the late buildup of dsRNA in vaccinia virus-infected cells, prevented induction of apoptosis by vaccinia virus with E3L deleted. Cells transfected with dsRNA in the absence of virus infection also underwent apoptosis. These results suggest that dsRNA is a trigger that can initiate a suicide response in virus-infected and perhaps uninfected cells.  相似文献   

17.
The translation initiation factor 2 alpha (eIF2alpha)-kinase, dsRNA-activated protein kinase (PKR), constitutes one of the major antiviral proteins activated by viral infection of vertebrates. PKR is activated by viral double-stranded RNA and subsequently phosphorylates the alpha-subunit of translation initiation factor eIF2. This results in overall down regulation of protein synthesis in the cell and inhibition of viral replication. Fish appear to have a PKR-like protein that has Z-DNA binding domains instead of dsRNA binding domains in the regulatory domain, and has thus been termed Z-DNA binding protein kinase (PKZ). We present the cloning of the Atlantic salmon PKZ cDNA and show its upregulation by interferon in Atlantic salmon TO cells and poly inosinic poly cytodylic acid in head kidney. We also demonstrate that recombinant Atlantic salmon PKZ, expressed in Escherichia coli, phosphorylates eIF2alphain vitro. This is the first demonstration that PKZ is able to phosphorylate eIF2alpha. PKZ activity, as measured by phosphorylation of eIF2alpha, was increased after addition of Z-DNA, but not by dsRNA. In addition, we show that wild-type Atlantic salmon PKZ, but not the kinase defective variant K217R, has a direct inhibitory effect on protein synthesis after transient expression in Chinook salmon embryo cells. Overall, the results support a role for PKZ, like PKR, in host defense against virus infection.  相似文献   

18.
19.
p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G(1) arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G(1) arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication.  相似文献   

20.
Human adenoviruses (Ads), like Ad type 2 (Ad2) and Ad5, encode a low-molecular-weight RNA (designated virus-associated [VA] RNAI) which is required for the efficient translation of viral mRNAs late after infection. We cloned and characterized a VA RNA gene from simian adenovirus type 7 (SA7) which appears to have biological activity analogous to that of Ad2 VA RNAI. Thus, SA7 VA RNA stimulates protein synthesis in a transient expression assay and can also functionally substitute for VA RNAI during lytic growth of human Ad5. The SA7 genome encodes only one VA RNA species, in contrast to human Ad2, which encodes two distinct species. This RNA is transcribed by RNA polymerase III in the rightward direction from a gene located at about coordinate 30 on the viral genome, like its Ad2 counterparts. SA7 VA RNA shows only a limited primary sequence homology with the Ad2 VA RNAs (approximately 55%); the flanking sequences, in fact, are better conserved than the VA RNA gene itself. The predicted secondary structure of SA7 VA RNA is, however, very similar to that of Ad2 VA RNAI, inferring that the double-stranded nature rather than the primary sequence of VA RNA is important for its biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号