首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The SCF-ROC1 ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase complex targets the ubiquitination and subsequent degradation of protein substrates required for the regulation of cell cycle progression and signal transduction pathways. We have previously shown that ROC1-CUL1 is a core subassembly within the SCF-ROC1 complex, capable of supporting the polymerization of ubiquitin. This report describes that the CUL1 subunit of the bacterially expressed, unmodified ROC1-CUL1 complex is conjugated with Nedd8 at Lys-720 by HeLa cell extracts or by a purified Nedd8 conjugation system (consisting of APP-BP1/Uba3, Ubc12, and Nedd8). This covalent linkage of Nedd8 to CUL1 is both necessary and sufficient to markedly enhance the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. A mutation of Lys-720 to arginine in CUL1 eliminates the Nedd8 modification, abolishes the activation of the ROC1-CUL1 ubiquitin ligase complex, and significantly reduces the ability of SCF(HOS/beta)(-TRCP)-ROC1 to support the ubiquitination of phosphorylated IkappaBalpha. Thus, although regulation of the SCF-ROC1 action has been previously shown to preside at the level of recognition of a phosphorylated substrate, we demonstrate that Nedd8 is a novel regulator of the efficiency of polyubiquitin chain synthesis and, hence, promotes rapid turnover of protein substrates.  相似文献   

3.
Members of the cullin and RING finger ROC protein families form heterodimeric complexes to constitute a potentially large number of distinct E3 ubiquitin ligases. We report here that the highly conserved C-terminal sequence in CUL1 is dually required, both for nuclear localization and for modification by NEDD8. Disruption of ROC1 binding impaired nuclear accumulation of CUL1 and decreased NEDD8 modification in vivo but had no effect on NEDD8 modification of CUL1 in vitro, suggesting that ROC1 promotes CUL1 nuclear accumulation to facilitate its NEDD8 modification. Disruption of NEDD8 binding had no effect on ROC1 binding, nor did it affect nuclear localization of CUL1, suggesting that nuclear localization and NEDD8 modification of CUL1 are two separable steps, with nuclear import preceding and required for NEDD8 modification. Disrupting NEDD8 modification diminishes the IkappaBalpha ubiquitin ligase activity of CUL1. These results identify a pathway for regulation of CUL1 activity-ROC1 and the CUL1 C-terminal sequence collaboratively mediate nuclear accumulation and NEDD8 modification, facilitating assembly of active CUL1 ubiquitin ligase. This pathway may be commonly utilized for the assembly of other cullin ligases.  相似文献   

4.
The cullin-containing ubiquitin-protein isopeptide ligases (E3s) play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. They have multisubunit modular structures in which substrate recognition and the catalysis of ubiquitination are carried out by distinct polypeptides. In a search for proteins involved in regulation of cullin-containing E3 ubiquitin ligases we immunopurified CUL4B-containing complex from HeLa cells and identified TIP120A as an associated protein by mass spectrometry. Immunoprecipitation of cullins revealed that all cullins tested specifically interacted with TIP120A. Reciprocal immunoaffinity purification of TIP120A confirmed the stable interaction of TIP120A with cullin family proteins. TIP120A formed a complex with CUL1 and Rbx1, but interfered with the binding of Skp1 and F-box proteins to CUL1. TIP120A greatly reduced the ubiquitination of phosphorylated IkappaBalpha by SCF(beta-TrCP) ubiquitin ligase. These results suggest that TIP120A functions as a negative regulator of SCF E3 ubiquitin ligases and may modulate other cullin ligases in a similar fashion.  相似文献   

5.
The conserved RING-H2 finger of ROC1 is required for ubiquitin ligation   总被引:1,自引:0,他引:1  
ROC1 is a common component of a large family of ubiquitin E3 ligases that regulate cell cycle progression and signal transduction pathways. Here we present evidence suggesting that a conserved RING-H2 structure within ROC1 is critical for its ubiquitin ligation function. Mercury-containing sulfhydryl modification agents (rho-hydroxymercuribenzoate and mercuric chloride) irreversibly inhibit the ROC1-CUL1 ubiquitin ligase activity without disrupting the complex. Consistent with this, these reagents also eliminate the ability of the Skp1-CUL1-HOS-ROC1 E3 ligase complex to support the ubiquitination of IkappaBalpha. Site-directed mutagenesis analysis identifies RING-H2 finger residues Cys(42), Cys(45), Cys(75), His(77), His(80), Cys(83), Cys(94), and Asp(97) as being essential for the ROC1-dependent ubiquitin ligase activity. Furthermore, C42S/C45S and H80A mutations reduce the ability of ROC1 to interact with CUL1 in transfected cells and diminish the capacity of ROC1-CUL1 to form a stable complex with Cdc34 in vitro. However, C75S, H77A, C94S, and D97A substitutions have no detectable effect on ROC1 binding activities. Thus, the ROC1 RING-H2 finger may possess multiple biochemical properties that include stabilizing an interaction with CUL1 and recruiting Cdc34. A possible role of the RING finger in facilitating the Ub transfer reaction is discussed.  相似文献   

6.
Protein ubiquitination plays an important role in regulating the abundance and conformation of a broad range of eukaryotic proteins. This process involves a cascade of enzymes including ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). E1 and E2 represent two families of structurally related proteins and are relatively well characterized. In contrast, the nature and mechanism of E3, proposed to contain activities in catalyzing isopeptide bond formation (ubiquitin ligation) and substrate targeting, remains inadequately understood. Two major families of E3 ubiquitin ligases, the HECT (for homologous to E6-AP C terminus) family and the RING family, have been identified that utilize distinct mechanisms in promoting isopeptide bond formation. Here, we showed that purified RING finger domain of ROC1, an essential subunit of SKP1-cullin/CDC53-F box protein ubiquitin ligases, was sufficient to activate UBCH5c to synthesize polyubiquitin chains. The sequence flanking the RING finger in ROC1 did not contribute to UBCH5c activation, but was required for binding with CUL1. We demonstrated that all cullins, through their binding with ROC proteins, constituted active ubiquitin ligases, suggesting the existence in vivo of a large number of cullin-RING ubiquitin ligases. These results are consistent with the notion that the RING finger domains allosterically activate E2. We suggest that RING-E2, rather than cullin-RING, constitutes the catalytic core of the ubiquitin ligase and that one major function of the cullin subunit is to assemble the RING-E2 catalytic core and substrates together.  相似文献   

7.
Li X  Lu D  He F  Zhou H  Liu Q  Wang Y  Shao C  Gong Y 《The Journal of biological chemistry》2011,286(37):32344-32354
Cullin 4B (CUL4B) is a scaffold protein that assembles cullin-RING ubiquitin ligase (E3) complexes. Recent studies have revealed that germ-line mutations in CUL4B can cause mental retardation, short stature, and many other abnormalities in humans. Identifying specific CUL4B substrates will help to better understand the physiological functions of CUL4B. Here, we report the identification of peroxiredoxin III (PrxIII) as a novel substrate of the CUL4B ubiquitin ligase complex. Two-dimensional gel electrophoresis coupled with mass spectrometry showed that PrxIII was among the proteins up-regulated in cells after RNAi-mediated CUL4B depletion. The impaired degradation of PrxIII observed in CUL4B knockdown cells was confirmed by Western blot. We further demonstrated that DDB1 and ROC1 in the DDB1-CUL4B-ROC1 complex are also indispensable for the proteolysis of PrxIII. In addition, the degradation of PrxIII is independent of CUL4A, a cullin family member closely related to CUL4B. In vitro and in vivo ubiquitination assays revealed that CUL4B promoted the polyubiquitination of PrxIII. Furthermore, we observed a significant decrease in cellular reactive oxygen species (ROS) production in CUL4B-silenced cells, which was associated with increased resistance to hypoxia and H(2)O(2)-induced apoptosis. These findings are discussed with regard to the known function of PrxIII as a ROS scavenger and the high endogenous ROS levels required for neural stem cell proliferation. Together, our study has identified a specific target substrate of CUL4B ubiquitin ligase that may have significant implications for the pathogenesis observed in patients with mutations in CUL4B.  相似文献   

8.
Recent genetic studies have documented a pivotal growth-regulatory role played by the Cullin 7 (CUL7) E3 ubiquitin ligase complex containing the Fbw8-substrate-targeting subunit, Skp1, and the ROC1 RING finger protein. In this report, we identified insulin receptor substrate 1 (IRS-1), a critical mediator of the insulin/insulin-like growth factor 1 signaling, as a proteolytic target of the CUL7 E3 ligase in a manner that depends on mammalian target of rapamycin and the p70 S6 kinase activities. Interestingly, while embryonic fibroblasts of Cul7-/- mice were found to accumulate IRS-1 and exhibit increased activation of IRS-1's downstream Akt and MEK/ERK pathways, these null cells grew poorly and displayed phenotypes reminiscent of those associated with oncogene-induced senescence. Taken together, our findings demonstrate a key role for the CUL7 E3 in targeting IRS-1 for degradation, a process that may contribute to the regulation of cellular senescence.  相似文献   

9.
Cullin proteins assemble a large number of RING E3 ubiquitin ligases and regulate various physiological processes. Covalent modification of cullins by the ubiquitin-like protein NEDD8 activates cullin ligases through an as yet undefined mechanism. We show here that p120(CAND1) selectively binds to unneddylated CUL1 and is dissociated by CUL1 neddylation. CAND1 formed a ternary complex with CUL1 and ROC1. CAND1 dissociated SKP1 from CUL1 and inhibited SCF ligase activity in vitro. Suppression of CAND1 in vivo increased the level of the CUL1-SKP1 complex. We suggest that by restricting SKP1-CUL1 interaction, CAND1 regulated the assembly of productive SCF ubiquitin ligases, allowing a common CUL1-ROC core to be utilized by a large number of SKP1-F box-substrate subcomplexes.  相似文献   

10.
Cullins are members of a family of scaffold proteins that assemble multisubunit ubiquitin ligase complexes to confer substrate specificity for the ubiquitination pathway. Cullin3 (Cul3) forms a catalytically inactive BTB-Cul3-Rbx1 (BCR) ubiquitin ligase, which becomes functional upon covalent attachment of the ubiquitin homologue neural-precursor-cell-expressed and developmentally down regulated 8 (Nedd8) near the C terminus of Cul3. Current models suggest that Nedd8 activates cullin complexes by providing a recognition site for a ubiquitin-conjugating enzyme. Based on the following evidence, we propose that Nedd8 activates the BCR ubiquitin ligase by mediating the dimerization of Cul3. First, Cul3 is found as a neddylated heterodimer bound to a BTB domain-containing protein in vivo. Second, the formation of a Cul3 heterodimer is mediated by a Nedd8 molecule, which covalently attaches itself to one Cul3 molecule and binds to the winged-helix B domain at the C terminus of the second Cul3 molecule. Third, complementation experiments revealed that coexpression of two distinct nonfunctional Cul3 mutants can rescue the ubiquitin ligase function of the BCR complex. Likewise, a substrate of the BCR complex binds heterodimeric Cul3, suggesting that the Cul3 complex is active as a dimer. These findings not only provide insight into the architecture of the active BCR complex but also suggest assembly as a regulatory mechanism for activation of all cullin-based ubiquitin ligases.  相似文献   

11.
RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that functions with the E2 ubiquitin conjugating enzyme CDC34. The solution structure of Rbx1/ROC1 revealed a globular RING domain (residues 40–108) stabilized by three structural zinc ions (root mean square deviation 0.30 ± 0.04 Å) along with a disordered N terminus (residues 12–39). Titration data showed that Rbx1/ROC1 preferentially recruits CDC34 in its ubiquitin-conjugated form and favors this interaction by 50-fold compared with unconjugated CDC34. Furthermore, NMR and biochemical assays identified residues in helix α2 of Rbx1/ROC1 that are essential for binding and activating CDC34∼ubiquitin for ubiquitylation. Taken together, this work provides the first direct structural and biochemical evidence showing that polyubiquitylation by the RING E3 ligase Rbx1/ROC1 requires the preferential recruitment of an E2∼ubiquitin complex and subsequent release of the unconjugated E2 protein upon ubiquitin transfer to a substrate or ubiquitin chain.  相似文献   

12.
We have undertaken a study of the yeast cullin family members Cul3 and Cul8, as little is known about their biochemical and physiological functions. We demonstrate that these cullins are associated in vivo with ubiquitin ligase activity. We show that Cul3 and Cul8 are functionally distinct from Cdc53 and do not interact with ySkp1, suggesting that they target substrates by Skp1- and possibly F-box protein-independent mechanisms. Whereas null mutants of CUL3 appear normal, yeast cells lacking CUL8 have a slower growth rate and are delayed in their progress through anaphase. The anaphase delay phenotype can be complemented by ectopic expression of Cul8 but not by any other yeast or human cullins, nor by a cul8 mutant deficient in binding to RING finger protein Roc1. Deletion of the RAD9 gene suppressed the anaphase delay phenotype of cul8delta, suggesting that loss of Cul8 function may compromise genomic integrity. These results indicate that in addition to the anaphase promoting complex, mitotic progression may involve another E3 ubiquitin ligase mediated by Cul8 protein.  相似文献   

13.
The SCF E3 ubiquitin ligases select specific proteins for ubiquitination (and typically destruction) by coupling variable adaptor (F box) proteins that bind protein substrates to a conserved catalytic engine containing a cullin, Cul1, and the Rbx1/Roc1 RING finger protein. A new crystal structure of the SCF(Skp2) ubiquitin ligase shows the molecular organization of this complex and raises important questions as to how substrate ubiquitination is accomplished.  相似文献   

14.
The cullin4A-RING E3 ubiquitin ligase (CRL4) is a multisubunit protein complex, comprising cullin4A (CUL4), RING H2 finger protein (RBX1), and DNA damage-binding protein 1 (DDB1). Proteins that recruit specific targets to CRL4 for ubiquitination (ubiquitylation) bind the DDB1 adaptor protein via WD40 domains. Such CRL4 substrate recognition modules are DDB1- and CUL4-associated factors (DCAFs). Here we show that, for DCAF1, oligomerization of the protein and the CRL4 complex occurs via a short helical region (residues 845-873) N-terminal to DACF1's own WD40 domain. This sequence was previously designated as a LIS1 homology (LisH) motif. The oligomerization helix contains a stretch of four Leu residues, which appear to be essential for α-helical structure and oligomerization. In vitro reconstituted CRL4-DCAF1 complexes (CRL4(DCAF1)) form symmetric dimers as visualized by electron microscopy (EM), and dimeric CRL4(DCAF1) is a better E3 ligase for in vitro ubiquitination of the UNG2 substrate compared to a monomeric complex.  相似文献   

15.
Cullins (CULs) are subunits of a prominent class of RING ubiquitin ligases. Whereas the subunits and substrates of CUL1-associated SCF complexes and CUL2 ubiquitin ligases are well established, they are largely unknown for other cullin family members. We show here that S. pombe CUL3 (Pcu3p) forms a complex with the RING protein Pip1p and all three BTB/POZ domain proteins encoded in the fission yeast genome. The integrity of the BTB/POZ domain, which shows similarity to the cullin binding proteins SKP1 and elongin C, is required for this interaction. Whereas Btb1p and Btb2p are stable proteins, Btb3p is ubiquitylated and degraded in a Pcu3p-dependent manner. Btb3p degradation requires its binding to a conserved N-terminal region of Pcu3p that precisely maps to the equivalent SKP1/F box adaptor binding domain of CUL1. We propose that the BTB/POZ domain defines a recognition motif for the assembly of substrate-specific RING/cullin 3/BTB ubiquitin ligase complexes.  相似文献   

16.
The cullin‐4‐based RING‐type (CRL4) family of E3 ubiquitin ligases functions together with dedicated substrate receptors. Out of the ˜29 CRL4 substrate receptors reported, the DDB1‐ and CUL4‐associated factor 1 (DCAF1) is essential for cellular survival and growth, and its deregulation has been implicated in tumorigenesis. We carried out biochemical and structural studies to examine the structure and mechanism of the CRL4DCAF1 ligase. In the 8.4 Å cryo‐EM map of CRL4DCAF1, four CUL4‐RBX1‐DDB1‐DCAF1 protomers are organized into two dimeric sub‐assemblies. In this arrangement, the WD40 domain of DCAF1 mediates binding with the cullin C‐terminal domain (CTD) and the RBX1 subunit of a neighboring CRL4DCAF1 protomer. This renders RBX1, the catalytic subunit of the ligase, inaccessible to the E2 ubiquitin‐conjugating enzymes. Upon CRL4DCAF1 activation by neddylation, the interaction between the cullin CTD and the neighboring DCAF1 protomer is broken, and the complex assumes an active dimeric conformation. Accordingly, a tetramerization‐deficient CRL4DCAF1 mutant has higher ubiquitin ligase activity compared to the wild‐type. This study identifies a novel mechanism by which unneddylated and substrate‐free CUL4 ligases can be maintained in an inactive state.  相似文献   

17.
Cullin7 (CUL7) is a molecular scaffold that organizes an E3 ubiquitin ligase containing the F-box protein Fbw8, Skp1 and the ROC1 RING finger protein. Dysregulation of the CUL7 E3 Ligase has been directly linked to hereditary human diseases as cul7 germline mutations were found in patients with autosomal-recessive 3-M and Yakuts short stature syndromes, which are characterized by profound pre- and postnatal growth retardation. In addition, genetic ablation of CUL7 in mice resulted in intrauterine growth retardation and perinatal lethality, underscoring its importance for growth regulation. The recent identification of insulin receptor substrate 1, a critical mediator of insulin and insulin-like growth factor-1 signaling, as the proteolytic target of the CUL7 E3 ligase, provided a molecular link between CUL7 and a well-established growth regulatory pathway. This result, coupled with other studies demonstrating interactions between CUL7 and the p53 tumor suppressor protein, as well as the simian virus 40 large T antigen oncoprotein, further implicated CUL7 as a novel player in growth control and suggested pathomechanistic insights into CUL7-linked growth retardation syndromes.  相似文献   

18.
19.
Cullin‐based E3 ubiquitin ligases are activated through covalent modification of the cullin subunit by the ubiquitin‐like protein Nedd8. Cullin neddylation dissociates the ligase assembly inhibitor Cand1, and promotes E2 recruitment and ubiquitin transfer by inducing a conformational change. Here, we have identified and characterized Lag2 as a likely Saccharomyces cerevisiae orthologue of mammalian Cand1. Similar to Cand1, Lag2 directly interacts with non‐neddylated yeast cullin Cdc53 and prevents its neddylation in vivo and in vitro. Binding occurs through a conserved C‐terminal β‐hairpin structure that inserts into the Skp1‐binding pocket on the cullin, and an N‐terminal motif that covers the neddylation lysine. Interestingly, Lag2 is itself neddylated in vivo on a lysine adjacent to this N‐terminal‐binding site. Overexpression of Lag2 inhibits Cdc53 activity in strains defective for Skp1 or neddylation functions, implying that these activities are important to counteract Lag2 in vivo. Our results favour a model in which binding of substrate‐specific adaptors triggers release of Cand1/Lag2, whereas subsequent neddylation of the cullin facilitates the removal and prevents re‐association of Lag2/Cand1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号