首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmid pBR313 carrying a 1.4 kb EcoRI fragment from the yeast TRP1 region (designated pLC544) is capable of transforming yeast trp1 mutants to Trp+ at high frequency (10(3)--10(4) transformants/micrograms DNA). Transformation can be achieved either by using purified plasmid DNA or by fusion of yeast spheroplasts with partially lysed Escherichia coli [pLC544] protoplast preparations. The Trp+ yeast transformants are highly unstable, segregating Trp- cells at frequencies of 0.18 per cell per generation (haploids) and 0.056 per cell per generation (diploids) in media containing tryptophan. Plasmid pLC544 replicates autonomously in the nucleus of yeast cells and segregation of Trp-cells is associated with the complete loss of plasmid sequences. In genetic crosses, pLC544 is randomly assorted during meiosis and is carried unchanged through the mating process into haploid recombinants.  相似文献   

2.
用酵母双杂交技术筛选与ItkPH结构域相互作用的蛋白分子 ,以了解Itk的功能及其在T细胞信号转导中的位置与作用 .Itk的PH结构域扩增后克隆入酵母双杂交系统的pLexA载体 ,转化酵母细胞EGY4 8(p8op lacZ) ,经检测PH结构域无自激活作用 ,且对酵母细胞无毒性作用 .用PH结构域作为“钓饵”蛋白 ,在酵母双杂交系统中筛选构建于AD载体的T细胞cDNA文库 .将PH结构域及筛库所得基因片段分别进行融合表达 ,用于体外结合实验 ,进一步证实二者的相互作用 .经营养缺陷选择、诱导筛选和鉴定确证 ,筛库所得的插段约 15 0 0bp的文库质粒为一真阳性克隆 .经blast比较分析为骨肉瘤、横纹肌肉瘤等肿瘤组织中高表达的os 9基因 .体外结合实验也表明 ,ItkPH结构域可与该基因表达产物结合 .Itk的PH结构域可与OS 9蛋白相互作用 .二者结合的意义有待进一步研究  相似文献   

3.
利用毕赤酵母系统对O型口蹄疫病毒VP1基因与结核杆菌HSP70基因进行融合表达,并检测此融合蛋白对小鼠细胞免疫和体液免疫的影响。将人工合成的O型口蹄疫病毒VP1基因与结核杆菌HSP70基因克隆入酵母表达载体pPICZαA中,以电穿孔法转化酵母菌X-33,用Zeocin YPDS平板筛选重组子,经甲醇诱导表达后,SDS-PAGE和免疫印迹分析表达产物。以皮下接种的方式给小鼠进行3次免疫,同时设两组对照,分别免疫PBS和常规灭活疫苗,然后通过MTT法和ELISA分别检测淋巴细胞的增殖情况和抗体水平。结果表明融合蛋白既能诱导细胞免疫应答又能诱导体液免疫应答,其诱导产生的抗体水平略低于常规灭活疫苗,而细胞免疫水平则高于后者。  相似文献   

4.
酵母菌属间原生质体融合构建高温酵母菌株   总被引:22,自引:0,他引:22  
酿酒酵母(Saccharomyces cerevisiae) A001和克鲁维酵母(Kluyveromyces sp.) Y034属间原生质体融合构建高温酵母菌株。对制备高再生活性原生质体及融合子细胞形态、生理化特征、同工酶性质、遗传稳定性和高温发酵等方面进行了研究。结果表明,融合子AY023和AY680遗传性能稳定,表达了双亲优良性状,获得了在45℃培养条件下产酒率7.4%的属间融合菌株,是目前已见文献报道的产酒率最高的高温(45℃)酵母菌株。  相似文献   

5.
Proteins with internal repeats (Pir) in the Baker’s yeast are located on the cell wall and include four highly homologous members. Recently, Pir proteins have become increasingly used as anchor proteins in yeast cell surface display systems. These display systems are classified into three types: N-terminal fusion, C-terminal fusion, and inserted fusion. In addition to the GPI (glycosylphosphatidyl inositol) and the FL/FS anchor proteins, these three Pir-based systems significantly increase the choices for target proteins to be displayed. Furthermore, Pir proteins can also be used as a fusion partner for target proteins to be effectively secreted into culture medium. Here, we summarize the development and application of Pir proteins as anchor proteins.  相似文献   

6.
The integrative vector pPIC3 for the yeast Pichia pastoris and a cDNA fragment encoding a fusion protein consisting of green fluorescent protein (GFP) and actin 5C of the fruit fly Drosophila melanogaster were used to construct a pPIC3-GFP-actin 5C expression plasmid. The P. pastoris host strain GS115 was transformed with the pPIC3-GFP-actin 5C carrying HIS4 as a selective marker. The transformants were selected on a histidine-deficient medium, and were shown to contain the gene of GFP-actin 5C fusion protein. Expression was induced by cultivation of the transformant cells in a methanol-containing medium. Production of the fusion protein in the yeast was detected by the bright green fluorescence of the GFP tag. The pattern of yeast cytoskeleton labeling by the fusion indicated proper folding and functioning of GFP-actin 5C in a heterologous system in vivo. After cell destruction, purification of GFP-actin 5C was performed by DNase I-Sepharose. Efficient binding of the chimera to the DNase I indicated nativity of the actin 5C fusion in vitro. SDS electrophoresis and further Western blot confirmed the purified protein to exhibit the expected molecular mass of about 70 kDa. The recombinant GFP-actin 5C was used to produce polyclonal antibodies, which had not been reported so far but are extremely needed for immuno-labeling and isolation of wild-type and mutant forms of actin 5C.  相似文献   

7.
人类疱疹病毒 7 型(HHV-7)的感染依赖于包膜糖蛋白在病毒生命周期的多个阶段发挥功能. 这些蛋白质可以介导病毒吸附,病毒包膜和宿主细胞膜融合以及病毒在细胞间的接触传播. 将表达 HHV-7 糖蛋白的 293T 细胞与 HHV-7 易感的SupT1 细胞共培养,检测虫荧光素酶报告基因的表达,以鉴定介导膜融合的 HHV-7 糖蛋白. 研究发现,HHV-7 糖蛋白 gB、gH、gL、gO 能介导 293T 细胞与 SupT1 细胞的融合,且融合可被抗 CD4 单抗所抑制. 结果表明,糖蛋白 gB、gH、gL、gO对于 HHV-7 引发的膜融合是必需的,其中某个蛋白质或所形成的蛋白质复合物可能是 CD4 的配体.  相似文献   

8.
Cell fusion during yeast mating provides a model for signaling-controlled changes at the cell surface. We identified the AXL1 gene in a screen for genes required for cell fusion in both mating types during mating. AXL1 is a pheromone-inducible gene required for axial bud site selection in haploid yeast and for proteolytic maturation of a-factor. Two other bud site selection genes, RSR1, encoding a small GTPase, and BUD3, were also required for efficient cell fusion. Based on double mutant analysis, AXL1 in a MATα strain acted genetically in the same pathway with FUS2, a fusion-dedicated gene. Electron microscopy of axl1, rsr1, and fus2 prezygotes revealed similar defects in nuclear migration, vesicle accumulation, cell wall degradation, and membrane fusion during cell fusion. The axl1 and rsr1 mutants exhibited defects in pheromone-induced morphogenesis. AXL1 protease function was required in MATα strains for fusion during mating. The ability of the Rsr1p GTPase to cycle was required for efficient cell fusion, as it is for bud site selection. During conjugation, vegetative functions may be redeployed under the control of pheromone signaling for mating purposes. Since Rsr1p has been reported to physically associate with Cdc24p and Bem1p components of the pheromone response pathway, we suggest that the bud site selection genes Rsr1p and Axl1p may act to mediate pheromone control of Fus2p-based fusion events during mating.  相似文献   

9.
Lee SJ  Kim BD  Rose JK 《Nature protocols》2006,1(5):2439-2447
Secreted and cell surface proteins play essential roles in numerous essential biological processes in eukaryotic organisms, but are often more difficult to isolate and identify than proteins that are localized in intracellular compartments. However, several high-throughput 'gene-trap' techniques have been developed to characterize these 'secretomes', including the yeast secretion trap (YST) screen. This method involves fusing cDNA libraries from the tissue or cell type of interest to a yeast (Saccharomyces cerevisiae) invertase reporter gene, transforming the resulting fusion library into an invertase-deficient yeast strain and plating the transformants on a medium containing sucrose as the sole carbon source. A yeast cell with a transgene encoding a secreted or cell surface protein can synthesize a secreted invertase fusion protein that can rescue the mutant, and the plasmid DNA can then be sequenced to identify the gene that encodes it. We describe a recently improved version of this screen, which allows the identification of genes encoding secreted proteins in 1-2 months.  相似文献   

10.
Increasing gene expression in yeast by fusion to ubiquitin   总被引:4,自引:0,他引:4  
Heterologous gene expression in yeast can be increased up to several hundred-fold by expressing a foreign gene as a fusion to the ubiquitin gene. An endogenous yeast endoprotease (Ub-Xase) removes the ubiquitin from the fusion product to produce the authentic protein. The utility of this technique has been demonstrated by expression of three different proteins in yeast as both unfused and ubiquitin-fused forms: 1) the alpha subunit of the mammalian stimulating G-protein of the adenylate cyclase complex (Gs alpha); 2) a soluble fragment of the T cell receptor protein (sCD4); and 3) the protease domain of human urokinase (UKP). The sequence specificity of the Ub-Xase was demonstrated by mutagenesis of the carboxyl-terminal glycine of ubiquitin to an alanine, which inhibited ubiquitin removal in vivo. Processing of the ubiquitin-Gs alpha fusion protein (ub-Gs alpha) in vivo resulted in Gs alpha which could be reconstituted in mammalian membrane preparations and had the same specific activity as the authentic Gs alpha expressed in yeast. The yeast Ub-Xase has also been shown to work in vitro by the processing of a ub-sCD4 fusion protein synthesized in Escherichia coli. This technology should greatly enhance the utility of yeast for heterologous protein production.  相似文献   

11.
In this study, we examine the use of green fluorescent protein (GFP) for monitoring a hexokinase (HXK)-GFP fusion protein in Saccharomyces cerevisiae for various events including expression, degradation, purification, and localization. The fusion, HXK-EK-GFP-6 x His, was constructed where the histidine tag (6 x His) would allow for convenient affinity purification, and the enterokinase (EK) cleavage site would be used for separation of HXK from GFP after affinity purification. Our results showed that both HXK and GFP remained active in the fusion and, more importantly, that there was a linear correlation between HXK activity and GFP fluorescence. Enterokinase cleavage studies revealed that both GFP fluorescence intensity and HXK activity remained unchanged after separation of the fusion proteins, which indicated that fusion of GFP did not cause structural alteration of HXK and thus did not affect the enzymatic activity of HXK. We also found that degradation of the fusion protein occurred, and that degradation was limited to HXK with GFP remaining intact in the fusion. Confocal microscopy studies showed that while GFP was distributed evenly in the yeast cytosol, HXK-GFP fusion followed the correct localization of HXK, which resulted in a di-localization of both cytosol and the nucleus. GFP proved to be a useful fusion partner that may lead to the possibility of integrating the bioprocesses by quantitatively following the entire process visually.  相似文献   

12.
Autophagy is a degradative pathway in which cytosolic material is enwrapped within double membrane vesicles, so-called autophagosomes, and delivered to lytic organelles. SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are key to drive membrane fusion of the autophagosome and the lytic organelles, called lysosomes in higher eukaryotes or vacuoles in plants and yeast. Therefore, the identification of functional SNARE complexes is central for understanding fusion processes and their regulation. The SNARE proteins Syntaxin 17, SNAP29 and Vamp7/VAMP8 are responsible for the fusion of autophagosomes with lysosomes in higher eukaryotes. Recent studies reported that the R-SNARE Ykt6 is an additional SNARE protein involved in autophagosome-lytic organelle fusion in yeast, Drosophila, and mammals. These current findings point to an evolutionarily conserved role of Ykt6 in autophagosome-related fusion events. Here, we briefly summarize the principal mechanisms of autophagosome-lytic organelle fusion, with a special focus on Ykt6 to highlight some intrinsic features of this unusual SNARE protein.  相似文献   

13.
The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell–cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2–infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell–cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell–cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell–cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell–cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell–cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.  相似文献   

14.
The release of vesicle contents following exocytotic fusion is limited by various factors including the size of the fusion pore. Fusion pores are channel-like, narrow structures after formation and proceed through semi-stable states ('fusion pore flickering'), unless they fully expand (full fusion) or close again (transient fusion). Partial release of vesicle contents may occur during transient fusion, which was described to last between milliseconds and seconds, depending on the size of the vesicle. We studied fusion pores in a slow-secreting lung epithelial cell (type II cell) using fluorescence staining of vesicle contents (surfactant) and fluorescence recovery after photobleaching (FRAP). Surfactant is a lipidic material, which is secreted into the alveolar lumen to reduce the surface tension in the lung. We found release of surfactant to be a slow process, which can last for hours. Accordingly, fusion pores in these cells are stable structures, which appear to be a barrier for release. FRAP measurements suggest that transient fusions occasionally take place in these long-lasting fusion pores, resulting in partial release of surfactant into the extracellular space. These data suggest that postfusion mechanisms may regulate the amount of secreted surfactant.  相似文献   

15.
The ability of the yeast Saccharomyces cerevisiae to produce ethanol and carbon dioxide from carbohydrates has been exploited by man for thousands of years. During its brief existence protoplast fusion has already become an invaluable tool for investigating the molecular genetics of yeast, as well as an important part of the arsenal of genetic manipulations available to develop new strains. In the case of industrial strains, a mating reaction is usually lacking. Protoplast fusion overcomes this barrier and allows for the genetic analysis of commercially valuable traits. A major block toward broader applicability of fusion is that hybrids becomes more unstable as the genetic backgrounds of the parents diverge. As greater progress in overcoming this problem is made, fusion, by itself and in conjunction with classical hybridization, will become increasingly important in the development of new strains. The incorporation of cytoplasmic elements into yeast protoplasts has the potential to vastly expand the array of biochemical reactions performed by yeasts, thereby increasing the importance of this microbe to mankind.  相似文献   

16.
A technique for the multiple transformation of yeast by protoplast fusion is described. This involved the PEG-induced fusion of protoplasts from cells which had been treated with chromosome-fragmenting agents (in this case cupferron and hydroxylamine) with protoplasts of triply auxotrophic cells. The recovery of transformants was increased significantly if one of the amino acid requirements of the recipient strain was included in the selection medium. Transformants isolated on supplemented media remained auxotrophic for that requirement. Prototrophic, uninucleate transformants had a DNA content and cellular volume similar to that of the parental strains. Possible mechanisms of gene transfer are discussed. This technique offers the possibility of transferring desirable characteristics from one yeast strain to another without altering the ploidy level of the recipient strain.  相似文献   

17.
Recombinant Saccharomyces cerevisiae YPB-G strain secreting a fusion protein displaying both BsAAase/GAase activities was grown in 1.5 l YPS media containing single (starch) and mixed carbon sources (glucose+starch) using a 2.5 l New Brunswick BiofloIII fermenter. Ethanol and biomass formation, starch utilisation, secretion of the amylolytic enzymes (-amylase and glucoamylase), accumulation of reducing sugars and glucose were followed during the fermentation of YPB-G under different conditions. Moreover, a model has been developed for the growth of recombinant yeast on substitutable substrates using cybernetic framework principles and incorporating product formation. In the present work, both the biphasic and the diauxic growth patterns observed experimentally in batch culture of recombinant yeast cells were simulated successfully by modifying the cybernetic framework to include ethanol formation and the degradation kinetics of starch which is not directly utilised by yeast. The model can further be expanded to fed-batch systems.  相似文献   

18.
Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p --> Cla4p --> Las17p/Vrp1p --> Arp2/3 complex --> actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin B or jasplakinolide, antibody to the actin regulatory proteins Las17p (yeast Wiskott-Aldrich syndrome protein) or Arp2/3, or deletion of actin regulatory genes. On docked vacuoles, actin is enriched at the "vertex ring" membrane microdomain where fusion occurs and is required for the terminal steps leading to membrane fusion. This role for actin may extend to other trafficking systems.  相似文献   

19.
The cleavable prepiece of the precursor to yeast cytochrome c oxidase subunit IV (an imported mitochondrial protein) was attached to the amino-terminus of mouse dihydrofolate reductase (a cytosolic protein) by gene fusion. The resulting fusion protein was imported into the matrix of isolated, energized yeast mitochondria and cleaved to a polypeptide whose size was similar to that of authentic dihydrofolate reductase.  相似文献   

20.
High level expression of proinsulin in the yeast, Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
Human proinsulin (PI) has been expressed to a high level (100 mg/liter) as a human superoxide dismutase-PI fusion protein in the yeast, Saccharomyces cerevisiae. At the junction of the two proteins is a methionine residue, allowing PI to be released from the fusion by reaction with cyanogen bromide. The fusion is expressed using a regulated, hybrid promoter containing the regulatory region of the alcohol dehydrogenase II promoter and the 3' end of a glyceraldehyde-3-phosphate dehydrogenase promoter, allowing the recombinant yeast cells to be stably maintained. Production of the fusion protein is induced by growth in medium lacking a fermentable carbon source. The heterologous fusion protein is probably insoluble within the cell, since electron microscopy reveals the presence of 'inclusion bodies'. In a cell-free extract the fusion protein is also insoluble, but can be solubilized with sodium dodecyl sulfate, and cleaved with cyanogen bromide. The PI that is produced contains incorrect disulfide bonds. After sulfitolysis, the product can be easily purified, renatured, and processed to yield insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号