首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of 26 h of normoxic hypocapnia (PaCO2, 31 MMHg) vs. 26 h of hypocapnia plus hypobaric hypoxia (PaCO2 32, PaO2 57 mmHg) were compared with respect to: a) CSF acid-base status; and b) the spontaneous ventilation (at PIO2 145 mmHg) which followed the imposed (voluntary) hyperventilation. For each condition of prolonged hypocapnia, PaCO2 was held constant throughout and pHa and [HCO3-]a were constant over the final 6-10 h. We assumed that measured changes in lumbar CSF acid-base status paralleled those in cisternal CSF. Spontaneous hyperventilation followed both normoxic and hypoxic hypocapnia but was significantly greater following hypoxic hypocapnia. In the CSF, pH compensation after 26 h of hyperventilation was incomplete (similar to 45-50%), was similar to that in arterial blood, and was unaffected by a superimposed hypoxemia. These data were inconsistent with current theory which proposes the regulation of CSF [HCO2] via local mechanisms and, in turn, the mediation of ventilatory acclimatization to hypoxemia and/or hypocapnia via CSF [H+]. Alternative mediators of ventilatory acclimatization were postulated, including mechanisms both dependent on and independent of "chemoreceptor" stimuli.  相似文献   

2.
The purpose of the present study was to determine the effect of sojourn at high altitude on cerebral electrical activity. Electroencephalographic (EEG) and visual evoked responses (VER) were recorded from seven healthy males under the following conditions: 1) during the first 2-3 h at 4,300 m altitude when Pao2 was maintained at 90 mmHg (control condition), 2) during the first 2-3 h of hypoxia (Pao2 = 40 mmHg), and 3) at 24- to 48-h intervals during the first 9-12 days of hypoxia. Electrode placement was according to the 10-20 International Electrode System. The VER was recorded from an electrode at the inion referred to the left ear. We found no significant changes from control cerebral electrical activity during the first 2-3 h of hypoxia. One subject's VER amplitude was greater than control on the 2nd and 3rd days of hypoxia and a similar change from control was consistently evident in a second subject beginning the 5th day of hypoxia. These changes suggest cortical depression. After the 5th day changes occurred in the remaining subjects which would be consistent with cortical excitation. In three subjects, EEG frequency was increased, amplitude decreased, and/or spiking became evident. In four subjects VER amplitude was reduced. Our findings provide support for the hypothesis that certain behavioral and physiological changes induced by sojourn at altitude could be caused by alterations in central nervous system function.  相似文献   

3.
Seven ponies were subjected to carotid body denervation (CD) and two ponies were sham operated (S). Measurement of arterial blood gases and arterial blood and cerebrospinal fluid (CSF) acid-base balance were made prior to and 1,2,4,9, and 17 wks after surgery in unanesthetized animals. Resting ventilation and ventilatory responsiveness to hypoxia and NaCN infusion were assessed prior to and 2,9, and 17 wks after surgery. Alveolar hypoventilation in the CD ponies was marked 1-2 wk after surgery when VE and VA were reduced 40% and 10%, respectively, from control and PaCO2 was 12-15 mmHg above control. However, the effect was not nearly as great 4, 9, and 17 wk after surgery when the PaCO2 stabilized at approximately 6 mmHg above control PaCO2. Arterial blood pH was normal in the hypercapnic CD ponies, but CSF pH remained acid relative to normal throughout the 17-wk period. Changes in ventilatory responsiveness to hypoxia and NaCN tended to parallel changes in resting ventilation. These findings suggest: 1) the carotid bodies are essential in ponies to maintain normal ventilation: 2) in CD ponies peripheral chemosensitivity is partially regained at some unestablished locus; and 3) pH compensating mechanisms in chronically hypercapnic ponies function relatively better in blood than in CSF.  相似文献   

4.
Ventilation, metabolism, arterial blood gases, and blood and cerebrospinal fluid (CSF) acid-base status were measured in exercise studies on seven ponies during mild, moderate, and near-maximal treadmill exercise. CSF and arterial blood were sampled via indwelling catheters. Generally measurements were made during the 3rd, 6th, and 9th minute of steady-state exercise, with CSF sampled only during the 9th minute. Alveolar ventilation (VA) and metabolic rate (VO2) increased proportionately during exercise below the anaerobic threshold, but above this threshold, VA increased at a faster rate than VO2. The similarity of these response to those observed in man suggests the pony is a suitable animal model for study of exercise hyperpnea. No change in CSF acid-base balance occurred with light-to-moderate work; however, with near-maximal work a fall in CSF carbon dioxide partial pressure due to hyperventilation caused CSF to become alkaline (pH = 7.380) relative to rest (pH = 7.330). CSF lactate increased slightly with exercise but had no effect on CSF [HCO3-], which remained constant from rest to severe exercise. We conclude that it is unlikely the hyperpnea at any intensity of exercise results from an increased H+ stimulation at the medullary chemoreceptor.  相似文献   

5.
In six healthy male volunteers at sea level (PB 747-759 Torr), we measured pH and PCO2 in cerebrospinal fluid (CSF), and in arterial and jugular bulb blood; from these data we estimated PCO2 (12) and pH for the intracranial portion of CSF. The measurements were repeated after 5 days in a hypobaric chamber (PB 447 Torr). Both lumbar and intracranial CSF were significantly more alkaline at simulated altitude than at sea level. Decrease in [HCO3-] IN lumbar CSF at altitude was similar to that in blood plasma. Both at sea level and at high altitude, PCO2 measured in the lumbar CSF was higher than that estimated for the intracranial CSF. At altitude, hyperoxia, in comparison with breathing room air, resulted in an increase in intracranial PCO2, and a decrease in the estimated pH in intracranial CSF. With hyperoxia at altitude, alveolar ventilation was significantly higher than during sea-level hyperoxia or normoxia, confirming that a degree of acclimatization had occurred. Changes in cerebral arteriovenous differences in CO2, measured in three subjects, suggest that cerebral blood flow may have been elevated after 5 days at altitude.  相似文献   

6.
Keeping the arterial pH at 7.4 and PaCO2 at 40 mmHg in eight anesthetized dogs, we acutely raised plasma potassium concentration from 3.4 to 8.2 meq/1, then allowed it to decay back to control levels. The cerebrospinal fluid (CSF)-blood electrical potential difference (pd) increased 13.2 mV per 10-fold increase in plasma [K+]. Again keeping arterial pH at 7.4 and PaCO2 at 40 mmHg, we elevated plasma [K+] in four dogs from 3.3 to 8.0 meq/1 and maintained this level for 6 h. We found 1) that the PD increased from a control value of +1.3 to +8.9mV, showing no tendency to decay over the 6 h; and 2) that the change in PD did not affect the distribution of Na+, K+, H+, Cl-, or HCO3- between blood and CSF over the 6 h. These results suggest that under these conditions the PD between CSF and blood may play no effective role in determining the distributions of these charged species by 6 h. These results are contrasted with recent findings which suggest that H+ and HCO3- are distributed according to passive forces between CSF and blood.  相似文献   

7.
20条正常麻醉犬经股动脉插管和枕骨下经皮穿刺在严格隔绝空气情况下,分别取得动脉血和脑脊液(CSF)样本,用IL-1303型血气分析仪和Beckman-700型生化分析仪检测酸碱变量及电解质。通过酶反应分光光度法检测乳酸(Lact)。应用(Na++K+)-(Cl-+Lact+HCO3-)公式计算阴离子隙(AG)。经统计学处理结果表明CSFPH、K+、AG<动脉血(p<0.01);CSFPCO2、HCO3-、Cl-、Lact>动脉血(p<0.01);CSFNa+同动脉血比较无明显差异(p>0.05)。  相似文献   

8.
Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3(-) levels in both extra- and intracellular compartments. The increase in plasma [HCO3(-)], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial PCO2 caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in PaCO2 of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3(-)] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3(-)] and the rise in arterial PCO2 that normally peaks 48 h into the digestive period. Vascular infusion of HCO3(-), that mimicked the postprandial rise in plasma [HCO3(-)], led to a progressive respiratory compensation of arterial pH through increased arterial PCO2. Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial PCO2. It seems, therefore, that the elevated PCO2, occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control.  相似文献   

9.
Chronic altitude residence improves muscular performance at altitude, but the effect of intermittent altitude exposures (IAE) on muscular performance at altitude has not been defined. The purpose of this study was to determine the effects of 3 wk of IAE, in combination with rest and cycle training, on muscular performance at altitude. Six lowlanders (23 +/- 2 yr, 77 +/- 6 kg; means +/- SE) completed a cycle time trial and adductor pollicis endurance test at sea level and during a 30-h acute exposure to 4,300 m altitude equivalent (barometric pressure = 446 mmHg) once before (pre-IAE) and once after (post-IAE) a 3-wk period of IAE (4 h/day, 5 days/wk, 4,300 m). During each IAE, three subjects cycled for 45-60 min/day at 60%-70% of maximal O2 uptake and three subjects rested. Cycle training during each IAE did not appear to affect muscular performance at altitude. Thus data from all six subjects were combined. Three weeks of IAE resulted in 1) a 21 +/- 6% improvement (P < 0.05) in cycle time-trial performance (min) from pre-IAE (32.8 +/- 3.7) to post-IAE (24.8 +/- 1.2), 2) a 63 +/- 26% improvement (P < 0.05) in adductor pollicis endurance (min) from pre-IAE (9.2 +/- 2.8) to post-IAE (14.8 +/- 4.2), and 3) a 10 +/- 4% increase (P < 0.05) in resting arterial O2 saturation (%) from pre-IAE (82 +/- 2) to post-IAE (90 +/- 1). These improvements in muscular performance after IAE correlated strongly with increases in resting arterial O2 saturation and were comparable to those reported previously after chronic altitude residence. IAE may therefore be used as an alternative to chronic altitude residence to facilitate improvements in muscular performance in athletes, soldiers, mountaineers, shift workers, and others that are deployed to altitude.  相似文献   

10.
It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial Pco(2) (Pa(CO(2))) or plasma HCO(3). A hypothetical situation in which the Pa(CO(2)) of arterial plasma is 80 mmHg and the plasma HCO(3) concentration is 48 mM is presented and analyzed to get over this misconception. As per the modified Henderson equation, the pH of arterial plasma would be 7.4; however, we explain that this may be associated with intracellular acidosis due to intracellular hypercapnia and that derangement of homeostasis is evident from the occurrence of respiratory depression and, eventually, coma in the patient described. This suggests that the ultimate goal of acid-base regulatory mechanisms is not just the maintenance of the pH of arterial plasma but the maintenance of the steady-state pH of intracellular fluid as well.  相似文献   

11.
The effects of discontinuous hypoxia on cerebrovascular regulation in humans are unknown. We hypothesized that five nocturnal hypoxic exposures (8 h/day) at a simulated altitude of 4,300 m (inspired O2 fraction = approximately 13.8%) would elicit cerebrovascular responses that are similar to those that have been reported during chronic altitude exposures. Twelve male subjects (26.6 +/- 4.1 yr, mean +/- SD) volunteered for this study. The technique of end-tidal forcing was used to examine cerebral blood flow (CBF) and regional cerebral O2 saturation (Sr(O2)) responses to acute variations in O2 and CO2 twice before, immediately after, and 5 days after the overnight hypoxic exposures. Transcranial Doppler ultrasound was used to assess CBF, and near-infrared spectroscopy was used to assess Sr(O2). Throughout the nocturnal hypoxic exposures, end-tidal Pco2 decreased (P < 0.001) whereas arterial O2 saturation increased (P < 0.001) compared with overnight normoxic control measurements. Symptoms associated with altitude illness were significantly greater than control values on the first night (P < 0.001) and second night (P < 0.01) of nocturnal hypoxia. Immediately after the nocturnal hypoxic intervention, the sensitivity of CBF to acute variations in O2 and CO2 increased 116% (P < 0.01) and 33% (P < 0.05), respectively, compared with control values. Sr(O2) was highly correlated with arterial O2 saturation (R2 = 0.94 +/- 0.04). These results show that discontinuous hypoxia elicits increases in the sensitivity of CBF to acute variations in O2 and CO2, which are similar to those observed during chronic hypoxia.  相似文献   

12.
Because the ovarian steroid hormones, progesterone and estrogen, have higher blood levels in the luteal (L) than in the follicular (F) phase of the menstrual cycle, and because of their known effects on ventilation and hematopoiesis, we hypothesized that less hypoxemia and less erythropoiesis would occur in the L than the F phase of the cycle after arrival at altitude. We examined erythropoiesis with menstrual cycle phase in 16 women (age 22.6 +/- 0.6 yr). At sea level, 11 of 16 women were studied during both menstrual cycle phases, and, where comparison within women was available, cycle phase did not alter erythropoietin (n = 5), reticulocyte count (n = 10), and red cell volume (n = 9). When all 16 women were taken for 11 days to 4,300-m altitude (barometric pressure = 462 mmHg), paired comparisons within women showed no differences in ovarian hormone concentrations at sea level vs. altitude on menstrual cycle day 3 or 10 for either the F (n = 11) or the L (n = 5) phase groups. Arterial oxygen saturation did not differ between the F and L groups at altitude. There were no differences by cycle phase on day 11 at 4,300 m for erythropoietin [22.9 +/- 4.7 (L) vs. 18.8 +/- 3.4 mU/ml (F)], percent reticulocytes [1.9 +/- 0.1 (L) vs. 2.1 +/- 0.3% (F)], hemoglobin [13.5 +/- 0.3 (L) vs. 13.7 +/- 0.3 g/100 ml (F)], percent hematocrit [40.6 +/- 1.4 (L) vs. 40.7 +/- 1.0% (F)], red cell volume [31.1 +/- 3.6 (L) vs. 33.0 +/- 1.6 ml/kg (F)], and blood ferritin [8.9 +/- 1.7 (L) vs. 10.2 +/- 0.9 microg/l (F)]. Blood level of erythropoietin was related (r = 0.77) to arterial oxygen saturation but not to the levels of progesterone or estradiol. We conclude that erythropoiesis was not altered by menstrual cycle phase during the first days at 4,300-m altitude.  相似文献   

13.
We explored the effects of 12-hour infusion of atrial natriuretic peptide (alpha-rANP:rat, 1-28) on arterial acid-base balance, using 5/6 nephrectomized rats with chronic renal failure. Before the infusion, nephrectomized rats had a higher mean arterial blood pressure, greater urine volume, and lower creatinine clearance than the normal controls, but they did not show a significant difference in arterial hydrogen ion concentration (pH), plasma bicarbonate concentration (HCO3-), partial pressure of carbon dioxide (PCO2), plasma base excess (BE), or plasma ANP concentration. alpha-rANP infusion produced a continuous blood pressure reduction in both nephrectomized and control rats. Urine volume and urinary sodium and potassium excretion tended to increase at 2-hour infusion, but not at 12-hour infusion. In the controls alpha-rANP significantly increased pH from 7.47 to 7.50, and decreased PCO2 by 14%. In contrast, in nephrectomized rats alpha-rANP significantly decreased pH from 7.48 to 7.44, HCO3- by 13%, and BE from -0.07 to -3.22 meq/l. Rats with chronic renal failure had greater reduction in HCO3- than the controls (p less than 0.05). There was no difference in plasma ANP level between the two groups. Thus, it is indicated that the long-term infusion of alpha-rANP reduces pH in rats with chronic renal failure, thereby adversely affecting the acid-base balance.  相似文献   

14.
Respiratory, circulatory and neuropsychological responses to stepwise, acute exposure at rest to simulated altitude (6,000 m) were compared in ten acclimatized recumbent mountaineers 24 days, SD 11 after descending from Himalayan altitudes of at least 4,000 m with those found in ten non-acclimatized recumbent volunteers. The results showed that hypoxic hyperpnoea and O2 consumption at high altitudes were significantly lower in the mountaineers, their alveolar gases being, however, similar to those of the control group. In the acclimatized subjects the activation of the cardiovascular system was less marked, systolic blood pressure, pulse pressure, heart rate and thus (calculated) cardiac output being always lower than in the controls; diastolic blood pressure and peripheral vascular resistance, however, were maintained throughout in contrast to the vasomotor depression induced by central hypoxia which occurred in the non-acclimatized subjects at and above 4,000 m [alveolar partial pressure of O2 less than 55-50 mmHg (7.3-6.6 kPa)]. It was concluded that in the acclimatized subjects at high altitude arterial vasodilatation and neurobehavioural impairment, which in the non-acclimatized subjects reflect hypoxia of the central nervous system, were prevented; that acclimatization to high altitude resulted in a significant improvement of respiratory efficiency and cardiac economy, and that maintaining diastolic blood pressure (arterial resistance) at and above 4,000 m may represent a useful criterion for assessing hypoxia acclimatization.  相似文献   

15.
Venoconstriction occurs at high altitude. This study sought to determine whether hypoxia or hypocapnia is the cause of the venoconstriction. Five male subjects were exposed to 4,000-4,400 m (PB 440-465 mmHg) with supplemental 3.77 +/- 0.02% CO2 in a hypobaric chamber for 4 days. Similar alveolar O2 tensions were obtained in four control subjects exposed to 3,500-4,100 m (PB 455-492 mmHg) without CO2. A water-filled plethysmograph was used to determine forearm flow and venous compliance. Systemic blood pressure was measured with the cuff procedure. Catecholamines were measured in 24-h urine collections. Venous compliance fell at high altitude in both groups and was less (P less than 0.01) than control values. Forearm flow and resistance were unaltered at altitude in the group with CO2 supplementation while forearm flow decreased and resistance increased in the hypocapnic group at 72 h of exposure. Urinary catecholamines increased in the group with CO2 and remained unaltered in the hypocapnic group. It is concluded that hypoxia is responsible for decreasing venous compliance, and hypocapnia for increasing resistance and decreasing flow. Group differences observed in urinary catecholamines may be explained by differences in arterial pH.  相似文献   

16.
Cerebral interstitial fluid (ISF) pH of ventral medulla or thalamus, cisternal cerebrospinal fluid (CSF) pH, and arterial blood pH, PCO2, and [HCO-3] were measured in chloralose-urethan-anesthetized, gallamine-paralyzed New Zealand White rabbits during 30-min episodes of either HCl or NaHCO3 intravenous infusions. ISF pH was measured continuously with glass microelectrodes (1- to 2-microns tip diameter). Cisternal CSF pH was measured continuously with an indwelling pH probe (1-mm tip diameter). Both ventral medullary and thalamic ISF [H+] changed significantly, whereas arterial PCO2 remained constant. CSF [H+] did not change. We conclude from these data that 1) changes in blood acid-base conditions are rapidly reflected in cerebral ISF and 2) transient differences in [H+] and [HCO-3] can exist between cerebral ISF and CSF.  相似文献   

17.
Oxygen transport during steady-state submaximal exercise in chronic hypoxia   总被引:3,自引:0,他引:3  
Arterial O2 delivery during short-term submaximal exercise falls on arrival at high altitude but thereafter remains constant. As arterial O2 content increases with acclimatization, blood flow falls. We evaluated several factors that could influence O2 delivery during more prolonged submaximal exercise after acclimatization at 4,300 m. Seven men (23 +/- 2 yr) performed 45 min of steady-state submaximal exercise at sea level (barometric pressure 751 Torr), on acute ascent to 4,300 m (barometric pressure 463 Torr), and after 21 days of residence at altitude. The O2 uptake (VO2) was constant during exercise, 51 +/- 1% of maximal VO2 at sea level, and 65 +/- 2% VO2 at 4,300 m. After acclimatization, exercise cardiac output decreased 25 +/- 3% compared with arrival and leg blood flow decreased 18 +/- 3% (P less than 0.05), with no change in the percentage of cardiac output to the leg. Hemoglobin concentration and arterial O2 saturation increased, but total body and leg O2 delivery remained unchanged. After acclimatization, a reduction in plasma volume was offset by an increase in erythrocyte volume, and total blood volume did not change. Mean systemic arterial pressure, systemic vascular resistance, and leg vascular resistance were all greater after acclimatization (P less than 0.05). Mean plasma norepinephrine levels also increased during exercise in a parallel fashion with increased vascular resistance. Thus we conclude that both total body and leg O2 delivery decrease after arrival at 4,300 m and remain unchanged with acclimatization as a result of a parallel fall in both cardiac output and leg blood flow and an increase in arterial O2 content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
大耳白兔动脉血和脑脊液酸碱电解质值及其相互关系   总被引:2,自引:0,他引:2  
30只正常大耳白兔,经股动脉穿刺插管和枕骨下经皮穿刺入枕骨下池,在严格隔绝空气情况下,分别取得动脉血和脑脊液(CSF)标本,用ABL3型血气分析仪及CN644型生化分析仪检测主要酸碱变量及电解质值。经统计学处理结果表明:CSFpHey k^+、Ca^2+、Mg^2+浓度〈动脉血,CSFPCO2及HCO3^-、Cl^-Na^_、H^+〉动脉血。另外,CSFPH与pHa,CSFPCO2与PaCO2、C  相似文献   

19.
We hypothesized that, during isosmotic isonatremic HCl acidosis with maintained isocapnia in cisternal cerebrospinal fluid (CSF), acetazolamide, by inhibiting carbonic anhydrase (CA) in the central nervous system (CNS), should produce an isonatric hyperchloric metabolic acidosis in CSF. Blood and CSF ions and acid-base variables were measured in two groups of anesthetized and paralyzed dogs with bilateral ligation of renal pedicles during 5 h of HCl acidosis (plasma [HCO3-] = 11 meq/l). Mechanical ventilation was regulated such that arterial PCO2 dropped and CSF Pco2 remained relatively constant. In group I (control group, n = 6), CSF [Na+] remained unchanged, [HCO3-] and strong ions difference (SID) fell, respectively, 6.1 and 5 meq/l, and [Cl-] rose 3.5 meq/l after 5 h of acidosis. In acetazolamide-treated animals, (group II, n = 7), CSF [Na+] remained unchanged, [HCO3-], and SID fell 11 and 7.1 meq/l, respectively, and [Cl-] rose 7.1 meq/l. We conclude that during HCl acidosis inhibition of CNS CA by acetazolamide induces an isonatric hyperchloric metabolic acidosis in CSF, which is more severe than that observed in controls.  相似文献   

20.
Amiloride (10(-3) M), a Na+-H+ countertransport inhibitor, infused into the cisterna magna (10 microliter/min for 40 min) of ketamine-xylazine-anesthetized rabbits decreased the cerebrospinal fluid (CSF) HCO3- response to 3 h of hypercapnia [arterial PCO2 (PaCO2) = 60 Torr] by 21.6% (mean delta CSF [HCO3-]/delta PaCO2 0.232 vs. 0.296 mmol.l-1.Torr-1, P less than 0.05). Diethyl pyrocarbonate (DEPC, 10(-3) M), a histidine-blocking agent, infused into the cisterna magna decreased the CSF HCO3- response to hypercapnia by 25.3% (mean delta CSF [HCO3-]/delta PaCO2, 0.230 vs. 0.308 mmol.l-1.Torr-1, P less than 0.02). DEPC is known to inhibit the ventilatory response to hypercapnia (E. Nattie. Respir. Physiol. 64: 161-176, 1986) by a direct effect at the ventrolateral medulla (E. Nattie. J. Appl. Physiol. 61: 843-850, 1986). In this study amiloride had no significant effect on the ventilatory response to hypercapnia. The interpretation is that a Na+-H+ countertransport protein, perhaps with a histidine at a key location, is involved in CSF acid-base regulation and that amiloride appears to have no effects on the chemoreception process. DEPC appears to have effects on chemoreception and on CSF acid-base regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号