首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between bacteriophage R17 coat protein and its RNA binding site for translational repression was studied as an example of a sequence-specific RNA-protein interaction. A nitrocellulose filter retention assay is used to demonstrate equimolar binding between the coat protein and a synthetic 21 nucleotide RNA fragment. The Kd at 2 degrees C in a buffer containing 0.19 M salt is about 1 nM. The relatively weak ionic strength dependence of Ka and a delta H = -19 kcal/mole indicates that most of the binding free energy is due to non-electrostatic interactions. Since a variety of RNAs failed to compete with the 21 nucleotide fragment for coat protein binding, the interaction appears highly sequence specific. We have synthesized more than 30 different variants of the binding site sequence in order to identify the portions of the RNA molecule which are important for protein binding. Out of the five single stranded residues examined, four were essential for protein binding whereas the fifth could be replaced by any nucleotide. One variant was found to bind better than the wild type sequence. Substitution of nucleotides which disrupted the secondary structure of the binding fragment resulted in very poor binding to the protein. These data indicated that there are several points of contact between the RNA and the protein and the correct hairpin secondary structure of the RNA is essential for protein binding.  相似文献   

2.
Abstract

The interaction between bacteriophage R17 coat protein and its RNA binding site for translational repression was studied as an example of a sequence-specific RNA-protein interaction. A nitrocellulose filter retention assay is used to demonstrate equimolar binding between the coat protein and a synthetic 21 nucleotide RNA fragment. The Kj at 2°C in a buffer containing 0.19 M salt is about 1 nM. The relatively weak ionic strength dependence of Ka and a ΔH = ?19 kcal/mole indicates that most of the binding free energy is due to non-electrostatic interactions. Since a variety of RN As failed to compete with the 21 nucleotide fragment for coat protein binding, the interaction appears highly sequence specific.

We have synthesized more than 30 different variants of the binding site sequence in order to identify the portions of the RNA molecule which are important for protein binding. Out of the five single stranded residues examined, four were essential for protein binding whereas the fifth could be replaced by any nucleotide. One variant was found to bind better than the wild type sequence. Substitution of nucleotides which disrupted the secondary structure of the binding fragment resulted in very poor binding to the protein. These data indicated that there are several points of contact between the RNA and the protein and the correct hairpin secondary structure of the RNA is essential for protein binding.  相似文献   

3.
An oligoribonucleotide with a sequence identical with the bacteriophage R17 replicase initiator region has been synthesized. The sequence also encompasses the binding domain of R17 coat protein, which is known to act as a translational repressor at this site. The 21-nucleotide fragment was synthesized entirely by enzymatic methods, T4 RNA ligase being used to join shorter oligomers. The resulting fragment has a secondary structure with the expected thermal stability. Since the synthetic fragment binds R17 coat protein with the same affinity as a 59-nucleotide fragment isolated from R17 RNA, we conclude that it has full biological activity.  相似文献   

4.
R17 coat protein forms a specific complex with a 21-nucleotide RNA hairpin containing the initiation site for the phage replicase gene. The RNA binding activity of the protein is inhibited by prior incubation with 5-bromouridine (BrU). The inactivation occurs with pseudo-first-order kinetics, and the inactive protein is stable to dilution. RNA binding activity of the BrU-inactivated protein is restored upon incubation with dithiothreitol. Inactivation of coat protein by N-ethylmaleimide or p-(chloromercuri)-benzenesulfonate indicates that a cysteine residue is located near the RNA binding site. Since 5-bromodeoxyuridine does not inactivate coat protein, a specific binding event appears to be required before inactivation can occur. Surprisingly, unmodified cytidine nucleotides also inactivate coat protein, with a specificity similar to the modified analogues. These results are discussed with regard to the formation of a transient covalent RNA-protein bond.  相似文献   

5.
Specific RNA binding by Q beta coat protein   总被引:11,自引:0,他引:11  
The interaction between the bacteriophage Q beta coat protein and its specific binding site on Q beta genomic RNA was characterized by using a nitrocellulose filter binding assay. Q beta coat protein bound to a synthetic 29-nucleotide RNA hairpin with an association constant of 400 microM-1 at 4 degrees C, 0.2 M ionic strength, pH 6.0. Complex formation had a broad pH optimum centered around pH 6.0 and was favored by both enthalpy and entropy. The salt dependence of Ka revealed that four to five ion pairs may be formed in the complex although approximately 80% of the free energy of complex formation is contributed by nonelectrostatic interactions. Truncation experiments revealed that coat protein binding required only the presence of a hairpin with an eight base pair stem and a three-base loop. Analysis of the binding properties of hairpin variants showed that the sequence of the stem was not important for coat protein recognition and only one of the three loop residues was essential. A bulged adenosine present in the coat protein binding site was not required for coat protein binding. Q beta coat protein binding specific is therefore primarily achieved by the structure and not by the sequence of the operator.  相似文献   

6.
J Carey  O C Uhlenbeck 《Biochemistry》1983,22(11):2610-2615
A filter retention assay is used to examine the kinetic and equilibrium properties of the interaction between phage R17 coat protein and its 21-nucleotide RNA binding site. The kinetics of the reaction are consistent with the equilibrium association constant and indicate a diffusion-controlled reaction. The temperature dependence of Ka gives delta H = -19 kcal/mol. This large favorable delta H is partially offset by a delta S = -30 cal mol-1 deg-1 to give a delta G = -11 kcal/mol at 2 degrees C in 0.19 M salt. The binding reaction has a pH optimum centered around pH 8.5, but pH has no effect on delta H. While the interaction is insensitive to the type of monovalent cation, the affinity decreases with the lyotropic series among monovalent anions. The ionic strength dependence of Ka reveals that ionic contacts contribute to the interaction. Most of the binding free energy, however, is a result of nonelectrostatic interactions.  相似文献   

7.
The coat protein of bacteriophage MS2 is known to bind specifically to an RNA hairpin formed within the MS2 genome. Structurally this hairpin is built up by an RNA double helix interrupted by one unpaired nucleotide and closed by a four-nucleotide loop. We have performed crystallographic studies of complexes between MS2 coat protein capsids and four RNA hairpin variants in order to evaluate the minimal requirements for tight binding to the coat protein and to obtain more information about the three-dimensional structure of these hairpins. An RNA fragment including the four loop nucleotides and a two-base-pair stem but without the unpaired nucleotide is sufficient for binding to the coat protein shell under the conditions used in this study. In contrast, an RNA fragment containing a stem with the unpaired nucleotide but missing the loop nucleotides does not bind to the protein shell.  相似文献   

8.
9.
A comparison of two phage coat protein-RNA interactions.   总被引:2,自引:1,他引:1       下载免费PDF全文
The interaction between the coat protein of the group I bacteriophage fr with its translational operator site is compared with the previously studied R17 interaction. The sequence of the two RNA binding sites differ by 2 of 20 nucleotides and two coat proteins by 17 of 129 amino acids. An analysis of the binding of fr coat protein to 24 operator variants revealed that the two proteins recognize operator sequences in virtually the same way. However, fr coat protein binds to nearly every RNA 6 to 14-fold tighter than R17 coat protein. Since the fr operator is a weaker binding variant and the fr coat protein shows a different temperature dependence of binding, it is unlikely that the two systems have different Kas in vivo. RNA fragments containing the operator sequences can initiate the capsid assembly with both fr and R17 coat protein. Surprisingly, the two coat proteins can form a mixed capsid in vitro.  相似文献   

10.
The biological functions of RNA-protein complexes are, for the most part, poorly defined. Here, we describe experiments that are aimed at understanding the functional significance of alfalfa mosaic virus RNA-coat protein binding, an interaction that parallels the initiation of viral RNA replication. Peptides representing the RNA-binding domain of the viral coat protein are biologically active in initiating replication and bind to a 39-nt 3'-terminal RNA with a stoichiometry of two peptides: 1 RNA. To begin to understand how RNA-peptide interactions induce RNA conformational changes and initiate replication, the AMV RNA fragment was experimentally manipulated by increasing the interhelical spacing, by interrupting the apparent nucleotide symmetry, and by extending the binding site. In general, both asymmetric and symmetric insertions between two proposed hairpins diminished binding, whereas 5' and 3' extensions had minimal effects. Exchanging the positions of the binding site hairpins resulted in only a moderate decrease in peptide binding affinity without changing the hydroxyl radical footprint protection pattern. To assess biological relevance in viral RNA replication, the nucleotide changes were transferred into infectious genomic RNA clones. RNA mutations that disrupted coat protein binding also prevented viral RNA replication without diminishing coat protein mRNA (RNA 4) translation. These results, coupled with the highly conserved nature of the AUGC865-868 sequence, suggest that the distance separating the two proposed hairpins is a critical binding determinant. The data may indicate that the 5' and 3' hairpins interact with one of the bound peptides to nucleate the observed RNA conformational changes.  相似文献   

11.
12.
RNA binding site of R17 coat protein   总被引:58,自引:0,他引:58  
The specific interaction between R17 coat protein and its target of translational repression at the initiation site of the R17 replicase gene was studied by synthesizing variants of the RNA binding site and measuring their affinity to the coat protein by using a nitrocellulose filter binding assay. Substitution of two of the seven single-stranded residues by other nucleotides greatly reduced the Ka, indicating that they are essential for the RNA-protein interaction. In contrast, three other single-stranded residues can be substituted without altering the Ka. When several of the base-paired residues in the binding site are altered in such a way that pairing is maintained, little change in Ka is observed. However, when the base pairs are disrupted, coat protein does not bind. These data suggest that while the hairpin loop structure is essential for protein binding, the base-paired residues do not contact the protein directly. On the basis of these and previous data, a model for the structural requirements of the R17 coat protein binding site is proposed. The model was successfully tested by demonstrating that oligomers with sequences quite different from the replicase initiator were able to bind coat protein.  相似文献   

13.
14.
15.
RNA binding properties of the coat protein from bacteriophage GA.   总被引:2,自引:0,他引:2       下载免费PDF全文
The coat protein of bacteriophage GA, a group II RNA phage, binds to a small RNA hairpin corresponding to its replicase operator. Binding is specific, with a Ka of 71 microM -1. This interaction differs kinetically from the analogous coat protein-RNA hairpin interactions of other RNA phage and also deviates somewhat in its pH and salt dependence. Despite 46 of 129 amino acid differences between the GA and group I phage R17 coat proteins, the binding sites are fairly similar. The essential features of the GA coat protein binding site are a based-paired stem with an unpaired purine and a four nucleotide loop having an A at position -4 and a purine at -7. Unlike the group I phage proteins, the GA coat protein does not distinguish between two alternate positions for the unpaired purine and does not show high specificity for a pyrimidine at position -5 of the loop.  相似文献   

16.
Selection of high affinity RNA ligands to the bacteriophage R17 coat protein.   总被引:10,自引:0,他引:10  
RNA ligands with high affinity for the bacteriophage R17 coat protein were isolated from a pool of random RNA molecules using SELEX. Of the 38 ligands isolated, 36 were found to contain a hairpin very similar to the naturally occurring coat protein binding site in the R17 genome. The common features of these 36 sequences provide a consensus binding site and predict components of a hairpin that promote favorable interaction with the coat protein. These include a tetraloop of primary sequence AUCA and a variable-length stem with a bulged adenosine residue at a specific stem position. The predicted consensus agrees well with the highest-affinity RNA binding site of the R17 coat protein, identified through classical but laborious techniques. These results demonstrate the value of SELEX as a tool for isolating high affinity RNA ligands to a specific target protein, and the further value of those ligands to point the researcher toward natural sequences for that target protein.  相似文献   

17.
Role of a bulged A residue in a specific RNA-protein interaction   总被引:26,自引:0,他引:26  
H N Wu  O C Uhlenbeck 《Biochemistry》1987,26(25):8221-8227
  相似文献   

18.
Determination of RNA-protein contacts using thiophosphate substitutions   总被引:19,自引:0,他引:19  
  相似文献   

19.
V S Sriskanda  G Pruss  X Ge    V B Vance 《Journal of virology》1996,70(8):5266-5271
Gel retardation and UV-cross-linking techniques were used to demonstrate that two tobacco proteins, with approximate molecular masses of 28 and 32 kDa, bind to a site within the 3' region of potato virus X (PVX) genomic RNA. The protein binding is specific, in that a 50-fold excess of unlabeled probe prevents formation of the complexes but no reduction is observed with a 2,000-fold molar excess of yeast tRNA. Complex formation is inhibited by poly(U) but is relatively unaffected by poly(A), poly(G), or poly(C-I). PVX RNA-host protein complex formation occurs in vitro at salt concentrations up to 400 mM. Deletion mapping indicates that the proteins bind within the 3' untranslated region (UTR) of PVX genomic RNA and that an 8-nucleotide U-rich sequence (5'-UAUUUUCU) is required for the binding. Deletion of the 8-nucleotide U-rich region from the 3' UTR of a sensitive PVX reporter virus that carries the luciferase gene in place of the PVX coat protein gene results in a more than 70,000-fold reduction in luciferase expression in tobacco protoplasts. RNA probes carrying the sequence GCGC in place of the central four contiguous uridines of the 8-nucleotide U-rich motif fail to bind host protein at detectable levels, and the same mutation, when introduced into the PVX reporter virus, eliminates viral multiplication. Mutations of 1 or 2 nucleotides within the same four uridines reduced both binding of host proteins and replication of reporter virus. These results indicate that the 8-nucleotide U-rich motif within the PVX 3' UTR is important for some aspect of viral multiplication and suggest that host protein binding plays a role in the process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号