首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We studied the cellular basis for the induction of Ts cells in anterior chamber (AC)-associated immune deviation (ACAID) by using TNP-modified syngeneic spleen cells (TNP-Spl). We demonstrate that the cells responsible for the induction of TNP-ACAID are non adherent, IA- T cells. This is in contrast to the antigen-presenting cells which induce suppression after the i.v. injection of TNP-Spl which are IA+/I-J+ adherent cells. Furthermore, two T cells within the TNP-Spl population are required to initiate suppression in TNP-ACAID: one is Lyt-1+, and I-J+, the other is Lyt-1+ and reactive with a monoclonal antibody, 14-30, which specifically identifies Ts inducer cells. The antigen specificity of ACAID resides in the 14-30+ T cell, and not the I-J+ cell. Although both cells must be viable to induce suppression, neither they (nor their products) must be in direct contact within the eye; one population may be in the right AC, the other in the left. Our results suggest that it is Ts inducer cells placed into the AC of the eye which initiate TNP-ACAID, and that these cells exit (or secrete Ts factors which exit) the eye to induce Ts effector cells in the spleen.  相似文献   

2.
We previously screened a series of macrophage hybridomas derived from fusion of P388D1 (H-2d) tumor cells with CKB (H-2k) splenic adherent cells for their ability to induce I-J restricted Ts cell responses. One Ia+ macrophage clone (63) consistently induced Ag-specific, I-J-restricted Ts. To evaluate whether macrophage hybridoma 63 also induced delayed-type hypersensitivity (DTH) immunity, mice were immunized with hapten-coupled macrophage hybridoma cells. Hapten-coupled splenic adherent cells and control macrophage hybridomas induced significant primary DTH responses, whereas hapten-coupled macrophage 63 induced little or no immunity when injected into H-2 compatible hosts. However, macrophage hybridoma 63 specifically activated I-Ak, I-Ad, or I-Ed restricted T cell hybridomas/clones, in vitro in the presence of appropriate Ag. Three different strategies designed to eliminate suppressor cell activity were successfully used to demonstrate that hapten-coupled macrophage 63 could also induce in vivo immunity. First, after immunization with hapten-coupled macrophages, mice were treated with cyclophosphamide. Second, macrophage 63 was treated with anti-IJ idiotype antibody before 4-hydroxy-3-nitrophenyl acetyl hapten (NP) coupling. Finally, haptenated macrophages were injected into I-A compatible but I-J incompatible recipients. These protocols are known to inhibit the induction of Ts activity, thus these results indirectly suggest that there is stimultaneous generation of Ts activity in vivo. The latter hypothesis was tested in adoptive transfer experiments. Transfer of lymph node cells from NP-63 primed B10.BR (H-2k) mice induced immunity in naive 4R animals, whereas the same number of immune cells suppressed NP-induced DTH responses in 5R mice. The combined results indicate that a cloned macrophage line can activate both Th and Ts cells. Macrophages which induce Ts activity may be responsible for maintaining the balance of immunity vs suppression. The data support the hypothesis that IJ interacting molecules (IJ-IM) expressed on macrophages are critical for induction of suppressor cell activity.  相似文献   

3.
We report the effects of two monoclonal antibodies (mab) specific for murine T suppressor (Ts) factors (TsF) in anterior chamber (AC)-associated immune deviation (ACAID), as induced by AC inoculation of TNP-coupled syngeneic spleen cells (TNP-Spl). One mab (14-12) is specific for Ts effector factor and can block the induction of Ts cells in ACAID if given before or after AC injection of TNP-Spl. The other mab (14-30) is specific for Ts inducer factors and blocks suppression only after given after TNP-Spl. We also studied the surface phenotype of the Ts cells induced by AC injection of TNP-Spl. We show that at least two cells are required for the adoptive transfer of suppression in TNP-ACAID. One is Lyt-2+ and 14-12+, the other is I-J+. These Ts cells have the surface phenotype of Ts effector cells as seen in other systems. These results indicate that mab which bind TsF in other systems affect Ts cells in TNP-ACAID, and that the Ts cells induced in TNP-ACAID are only of the Ts effector type.  相似文献   

4.
Immune responses to GAT are controlled by H-2-linked Ir genes; soluble GAT stimulates antibody responses in responder mice (H-2b) but not in nonresponder mice (H-2q). In nonresponder mice, soluble GAT stimulates suppressor T cells that preempt function of helper T cells. After immunization with soluble GAT, spleen cells from (responder x nonresponder: H-2b X H-2q)F1 mice develop antibody responses to responder H-2b GAT-M phi but not to nonresponder H-2q GAT-M phi. This failure of immune F1 spleen cells to respond is due to an active suppressor T cell mechanism that is activated by H-2q, but not H-2b, GAT-M phi and involves two regulatory T cell subsets. Suppressor-inducer T cells are immune radiosensitive Lyt-1 +2-, I-A-, I-J+, Qa-1+ cells. Suppressor-effector T cells can be derived from virgin or immune spleens and are radiosensitive Lyt-1-2+, I-A-, I-J+, Qa-1+ cells. This suppressor mechanism can suppress responses of virgin or immune F1 helper T cells and B cells. Helper T cells specific for H-2b GAT-M phi are easily detected in F1 mice after immunization with soluble GAT; helper T cells specific for H-2q GAT-M phi are demonstrated after elimination of the suppressor-inducer and -effector cells. These helper T cells are radioresistant Lyt-1+2-, I-A+, I-J-, Qa-1- cells. These data indicate that the Ir gene defect in responses to GAT is not due to a failure of nonresponder M phi to present GAT and most likely is not due to a defective T cell repertoire, because the relevant helper T cells are primed in F1 mice by soluble GAT and can be demonstrated when suppressor cells are removed. These data are discussed in the context of mechanisms for expression of Ir gene function in responses to GAT, especially the balance between stimulation of helper vs suppressor T cells.  相似文献   

5.
Modulation of suppressor T cell induction with gamma-interferon   总被引:1,自引:0,他引:1  
The ability of antigen-coupled splenic adherent cells to induce suppressor T cells (Ts) is dependent on the presence of I-J determinants on antigen-presenting cells. After 4 days of in vitro culture, antigen-coupled adherent cells lose the capacity to induce Ts. Supernatants from Con A-stimulated lymphocyte cultures and purified interferon-gamma can sustain accessory function for the induction of Ts. Furthermore, after in vitro culture of splenic adherent cells, there is an apparent correlation between the loss of I-A determinants and the decrease in I-J-restricted Ts induction. Stimulation of Ia expression with interferon-gamma results in a simultaneous increase in the ability to induce Ts. Finally, elimination of I-A-bearing splenic adherent cells with antibody + C eliminates I-J-restricted Ts induction. The combined data imply a co-regulation of I-A and I-J on the antigen-presenting cells involved in the induction of both the Ts1 and Ts3 suppressor T cell subsets.  相似文献   

6.
The role of various subpopulations of antigen-presenting macrophages in the induction of T-lymphocyte subpopulations has been difficult to study in the past. We have used an in vitro system of bone marrow cell culture both to induce T-effector (TDH) and T-suppressor (Ts) cells active in delayed-type hypersensitivity. Bone marrow-derived macrophages (BM-MA) grown in Teflon bag cultures were allowed to attach to culture dishes and were pulse-labeled with 2,4-dinitrobenzene sulfonate (DNBSO3). Spleen cell lymphocytes from nonsensitized BALB/c mice were cocultured with antigen-pulsed or control BM-MA for 3 days. The lymphocytes were harvested, and injected iv into BALB/c mice which were challenged within 1 hr after injection by painting the right ear with 2,4-dinitrofluorobenzene (DNFB, effector test) or sensitized with DNFB on 2 days following iv injection of the cells and challenged 5 days later (suppressor test). Ear swelling was measured 24 hr later to assess the effector or suppressor function of the in vitro educated lymphocytes. BM-MA grown for 5 days (BM-MA 5) in L-cell conditioned medium induced only TDH cells (Thy 1+, Lyt 1+2-) whereas BM-MA grown for 10 days in conditioned medium induced only Ts cells (Thy 1+, Lyt 1-2+). In both cases, induced TDH and Ts cells were antigen specific. Functionally, induced Ts cells suppressed the afferent limb of the delayed response. When DNP-BM-MA 5 and DNP-BM-MA 10 were used to induce TDH or Ts cells in vivo by subcutaneous or intravenous injection respectively, only BM-MA 5 were able to sensitize recipient mice. Both 5- and 10-day macrophage populations induced Ts cells in vivo. Functionally, these Ts cells appeared to act on the efferent limb of the delayed reaction. We conclude that different populations of antigen-presenting macrophages can preferentially induce TDH or Ts cells, perhaps depending on antigen presentation in association with class II antigens or on the functional state of the antigen-presenting cell.  相似文献   

7.
The involvement of a third-order suppressor T cell population (Ts3) in the suppression of in vitro PFC responses was analyzed. It was shown that Ts2 effector-phase suppressor cells, induced by the i.v. injection of NP-coupled syngeneic spleen cells, require a third suppressor T cell population to effect NPb idiotype-specific suppression of an in vitro B cell response. This Ts3 population was shown to be present in NP-primed but not unprimed donors. The Ts3 population specifically binds NP and is Lyt-1-, Lyt-2+, I-J+ and bears NPb idiotypic determinants. The involvement of the Ts3 population in a suppressor pathway that requires recognition of idiotypic determinants is discussed.  相似文献   

8.
T cell subsets that regulate antibody responses to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) in mice that are Ir gene non-responders have been further characterized. We previously defined several T cell subsets in GAT-primed non-responder mice. The Lyt-2+ suppressor-effector T cells suppress responses to GAT and GAT complexed to methylated BSA (GAT-MBSA). The Lyt-1+ cell population is complex and can be separated into I-J- Th cells, which support responses to GAT and GAT-MBSA. After priming, the Lyt-1+, I-J+ cell population contains suppressor-inducer cells that activate precursors of suppressor-effector cells to suppress responses to GAT and GAT-MBSA as well as Ts cells that directly inhibit responses to GAT but not GAT-MBSA. By contrast, the Lyt-1+ cells from virgin mice contain only cells that directly suppress responses to GAT but not GAT-MBSA. The major question addressed in the present studies was whether the Lyt-1+, I-J+ Ts cells in virgin and primed mice and the suppressor-inducer cells in GAT-primed mice were functionally and serologically distinct subsets. The studies used mAb and panning procedures to separate cell populations and inhibition of PFC cell responses to functionally define the activity of the cell populations. We used the following two mAb that were raised by immunizing rats with GAT-specific suppressor factors: 1248A4.10 (known to react with suppressor-inducer cells) and 1248A4.3, another reagent from the same fusion. Lyt-1+ cells from virgin spleens contained Ts cells that were A4.10-, A4.3+ and no suppressor-inducer T cells, whereas Lyt-1+ cells from GAT-primed spleens contained Ts cells that were A4.10-, A4.3+ as well as A4.10+, A4.3- suppressor-inducer cells. Thus, the Lyt1+, I-J+ cell subset can be divided into two functionally and serologically distinct subsets, direct Ts cells (1248A4.3+), which suppress responses to GAT but not GAT-MBSA, and GAT-primed suppressor-inducer T cells (1248A4.10+).  相似文献   

9.
T cell subsets from virgin and immunized mice, which are Ir gene controlled nonresponders to GAT, which regulate antibody responses to GAT have been characterized. Virgin nonresponder B10.Q B cells develop GAT-specific antibody responses to GAT, B10.Q GAT-M phi, and GAT-MBSA when cultured with virgin or GAT-primed Lyt-1+, I-J-, Qa1- B10.Q helper T cells. Virgin T cells are radiosensitive, whereas immune T cells are radioresistant (750 R); qualitatively identical helper activity is obtained with T cells from mice immunized with soluble GAT, B10.Q GAT-M phi, and GAT-MBSA. Responses to GAT and GAT-M phi are not observed when virgin or GAT-primed Lyt-1+, I-J+, Qal+ T cells are added to culture of virgin or GAT-primed Lyt-1+, I-J-, Qa1- helper T cells and virgin B cells; the GAT-specific response to GAT-MBSA is intact. The Lyt-1+, I-J+, Qa1+ T cells from mice primed with GAT, GAT-M phi, and GAT-MBSA were qualitatively identical in mediating this suppression. Virgin Lyt-2+ T cells have no suppressive activity alone or with virgin Lyt-1+, I-J+, Qa1+ T cells, whereas responses to GAT, GAT-M phi, and GAT-MBSA are suppressed in cultures of GAT-primed helper T cells containing GAT-primed Lyt-2+ T cells (with or without GAT-primed Lyt-1+, I-J+, Qa1+ T cells). Suppression of responses to GAT-MBSA in cultures of GAT-M phi-primed helper T cells requires both GAT-M phi-primed Lyt-1+, I-J+, Qa1+ T cells and Lyt-2+ T cells; the Lyt-1+, I-J+, Qa1+ T cells appear to function as inducer cells in this case. In cultures containing GAT-MBSA-primed helper T cells, either GAT-MBSA-primed Lyt-1+, I-J+, Qa1+ or Lyt-2+ T cells suppress responses to GAT and GAT-M phi; under no circumstances are responses to GAT-MBSA suppressed by GAT-MBSA-primed regulatory T cells. This regulation of antibody responses to GAT by suppressor T cells is discussed in the context of the involvement of suppressor T cells in responses to antigens under Ir control, and of the evidence that nonresponsiveness to GAT is not due to a defect in the T cell repertoire, but rather is due to an imbalance in the activation of suppressor vs helper T cells.  相似文献   

10.
Intravenous administration of hapten-coupled, high-density (density greater than 1.077) epidermal cells (HD-EC) to mice results in the appearance of transferable splenic T suppressor (Ts) cells as assayed in adoptive transfer experiments. Depletion of I-A bearing cells from the HD-EC population before hapten coupling prevents these cells from inducing Ts cell formation, whereas depletion of Thy-1-bearing cells from the HD-EC cell preparation has no effect. When HD-EC are adhered to glass for 2 hr, the ability to induce Ts cell formation resides in the adherent population. Exposure of HD-EC to a dose of ultraviolet radiation (UVR) that largely abrogates the ability of hapten-coupled EC to immunize mice for a DTH response does not affect the ability of these cells to activate Ts cells. Treatment of mice with i.p. administration of 20 mg/kg of cyclophosphamide 2 days before EC harvesting abrogates the ability of HD-EC from these mice to induce Ts cell formation. HD-EC from B10.A(3R) (I-Jb) but not B10.A(5R) (I-Jk) mice induce Ts cell formation in B10.A(3R) mice, demonstrating that the ability to do so is restricted by the I-J locus. Transmission electron microscopy of adherent HD-EC populations demonstrated that two cell types were present. One type had the characteristics of keratinocytes; the other was monocyte-like and resembled Langerhans cells or indeterminate cells in many aspects. Immunoelectron microscopy revealed this second cell type to bear I-A/I-E antigen. These cells were T-200 positive and Mac-1 negative by immunoperoxidase staining. Extensive examination by light and electron microscopy failed to reveal any dermal components in the EC populations; however, a very small degree of dermal contamination cannot be excluded. Thus, EC that activate afferent-acting Ts cells are high-density, I-A+, Thy-1-, I-J restricted, glass adherent, and functionally UVR resistant and cyclophosphamide sensitive.  相似文献   

11.
When cultured with DNP-labeled I-A+ cells, Lyt 2+ T suppressor cells (Ts) from 2,4,-dinitrobenzene sulfonate (DNBS)-tolerized mice are activated to synthesize and release a suppressor factor (SSF) which suppresses the transfer of contact sensitivity to DNFB. The signals required to activate the DNBS-primed Ts to produce SSF were studied in greater detail. As previously observed with fixed DNP-labeled spleen cell stimulators, the supernatants from cultures of DNBS-primed spleen cells and glutaraldehyde-fixed DNP-labeled P388D1 cell monolayers did not contain SSF. When the tolerant cells were harvested from these monolayers and were treated with IL-1, the Ts released the synthesized SSF. Synthesis and release of SSF required Ts recognition of DNP/class I MHC on the hapten-presenting cells followed by interaction with the costimulator IL-1. When the tolerant cells were cultured with fixed DNP-labeled I-A+ or I-A- stimulators to induce SSF synthesis, release was induced by adding either unlabeled or TNP-labeled unprimed spleen cells to the cultures. The release of SSF was blocked when the second stimulators were pretreated with anti-I-A antibody but not with anti-DNP or anti-class I MHC antibodies. These results indicate that the release of SSF by DNBS-primed Lyt 2+ Ts is regulated by the activity of a self-I-A-reactive (i.e., autoreactive) T cell in the tolerant spleen cell population.  相似文献   

12.
Susceptibility to experimental autoimmune thyroiditis (EAT) in the mouse is linked to the I-A subregion of the major histocompatibility complex. EAT can be induced in susceptible strains of mice by immunization with mouse thyroglobulin (MTg) and adjuvant. We have described a cell transfer system wherein spleen cells from EAT-susceptible CBA/J mice primed in vivo with MTg and lipopolysaccharide (LPS) can be activated in vitro with MTg to transfer EAT to naive syngeneic recipients. This cell transfer system was used to elucidate the cellular basis for the I-A restriction in EAT. While the cell active in transferring EAT was Thy 1+ I-A-, depletion of I-A+ cells from the in vitro culture prevented the activation of EAT effector T cells. MTg-pulsed mitomycin C-treated naive syngeneic spleen cells as antigen-presenting cells (APCs) could replace the I-A+ cells in vitro. Allogeneic (Balb/c) APCs were ineffective. Using APCs from several recombinant inbred strains of mice, it was shown that C3H/HEN and B10.A(4R) APCs were effective in activating MTg/LPS-primed CBA/J spleen cells to transfer EAT while B10.A(5R) APCs were ineffective. This maps the H-2 restriction to the K or I-A subregions. Addition of polyclonal anti-Iak or monoclonal anti-I-Ak or anti-L3T4 during in vitro activation inhibited both the generation of EAT effector cells and the proliferative response to MTg. Irrelevant anti-Ia reagents, monoclonal anti-I-Ek, and monoclonal anti-I-Jk were ineffective. Thus the I-A restriction in murine EAT appears to result from an I-A restricted interaction between Ia+ APCs and Ia- EAT effector T cells.  相似文献   

13.
A profound state of specific tolerance for the contact sensitivity reaction can be produced by i.v. exposure to hapten on the surface of syngeneic macrophages. When the same haptenated cells are incubated with specific antibody to form cell-bound Ag-antibody complexes, i.v. injection induces immunity rather than tolerance. We observe that such cell-bound Ag-antibody complexes induce not only effector cells for contact sensitivity but also hapten-specific contrasuppressor T (Tcs) cells, which are capable of rendering effector cells resistant to the inhibitory effects of Ts cells. Whereas the induction of the effector cells of contact sensitivity by cell-bound complexes required I region compatibility between the injected cells and the recipient, the induction of Tcs cells showed no genetic restriction. On the other hand, induction of contrasuppression required intact Fc on the complexed antibody, inasmuch as F(ab')2 fragments of specific antibody did not induce immunity. In addition, Tcs cells could also be induced by Ag-antibody complexes on opsonized TNP-mouse RBC treated with anti-TNP antibody. Immunity induced by cell-bound Ag-antibody complexes was observed only when antibodies of the IgM, IgG3, or IgG1 isotypes are used to generate the complexes. Further studies demonstrated that the Tcs cells induced in this way displayed the phenotype of Tcs cells described in other systems (Lyt-1+,2- I-J+, Vicia villosa lectin-adherent) and released a hapten-specific contrasuppressor factor. These studies indicate that Tcs cells can be induced independently of other T cells (such as the effector cells of contact sensitivity) and are likely to be responsible for some of the immunoregulatory effects of cell-bound Ag-antibody complexes. The role of antibody isotype in the induction of Tcs cells is discussed.  相似文献   

14.
Previous studies of the immune response of C57BL/6 mice to the 4-hydroxy-3-nitrophenyl acetyl (NP) hapten determined that challenge with antigenic forms of hapten induces both immunity and suppression. The anti-NP plaque-forming cell response can be down regulated by an Ag-induced cascade consisting of three suppressor T cell subsets. These three populations, termed Ts1, Ts2, and Ts3 have been characterized to have inducer, transducer and effector functions, respectively. Although the functions of each of these subsets have been examined in vivo, the cellular requirements for in vitro Ts induction have only been investigated for the Ts3 population. The present study characterizes the cellular events that lead to the induction of the Ts2, suppressor transducer population. Culture of naive C57BL/6 spleen cells with Ts1-derived suppressor factor in the absence of exogenous Ag leads to the generation of Ts2 cells that mediate Ag-specific suppression of NP plaque-forming cell responses. Phenotypic analyses demonstrate that a CD3+, CD4-, CD5+, CD8+, and I-J+ precursor population is stimulated by TsF1 to become mature Ts2 cells that express CD3, CD8, and I-J but not CD5. Although previous studies have reported an essential role for B cells in the induction of other Ts populations, depletion of B cells from Ts2 induction cultures had no effect on Ts2 generation. Despite the absence of B cells in these cultures, the mature Ts2 cells were functionally IgH restricted. Studies with IgH congenic B.C-8 mice suggest that this restriction specificity was imposed by the idiotype-related determinants expressed on the TsF1, not the T cell genotype.  相似文献   

15.
The ability of UV-treated splenic adherent cells (SAC) to induce T cell-mediated immunity and suppressor T cells was analyzed in the 4-hydroxy-3-nitrophenyl acetyl (NP) system. UV irradiation of 0.88 KJ/m2 decreased the capacity of NP-coupled SAC to induce delayed-type hypersensitivity (DTH) responses by about 50%. The ability of uncoupled UV-treated SAC to induce allogeneic DTH response was also imparied, indicating that UV-treated SAC are inefficient at inducing DTH in these systems. TS1 induction by UV-treated NP-SAC was evaluated TS1 induction by UV-treated NP-SAC was evaluated by using adherent cells that were subjected to the same dose of UV irradiation that impaired DTH induction. Intravenous administration of 10(3) or 10(4) UV-treated NP-coupled SAC induced TS1 cells with the same efficiency as non-UV-irradiated cells. The TS1 cells induced in this fashion were antigen specific. Furthermore, to establish that the antigen was not reprocessed by the host, I-J-mismatched, UV-treated NP-SAC were unable to induce TS1 cells. The population of antigen-presenting cells responsible for TS1 induction appear to express both I-A and I-J determinants. TS2 induction by UV-treated accessory cells was also analyzed. TSF1 inducer suppressor factor was pulsed onto graded numbers of either normal or UV-treated adherent cells. The same levels of antigen-specific suppression were induced with normal and UV-treated cells. Finally, TS3 induction by UV-treated NP-SAC was analyzed. UV-treated and normal NP-SAC (3 X 10(3] induced antigen-specific suppression of NP DTH responses. I-J-mismatched, UV-treated NP-SAC failed to induce suppression, suggesting that the hapten was not reprocessed by the host under these experimental conditions. The accessory cell population responsible for TS3 induction appears to express both I-A and I-J determinants. Thus, there are at least two functional distinctions between the antigen-presenting cells that induce immunity vs those that induce suppressor cells. First, UV treatment selectively impairs the antigen-presenting cells, which activate the positive limb of the immune response. Second, I-J determinants appear to be specifically associated with the SAC, which induce suppressor T cells. Although these criteria can be used to distinguish the accessory cells involved in suppressor cell pathways from those controlling helper T cell induction, there were no discernible phenotypic differences among the accessory cells that induce the TS1, TS2, and TS3 subsets.  相似文献   

16.
Type III pneumococcal polysaccharide (S3) coupled to spleen cells (S3-SC) has been shown to activate S3-specific Ts and Tcs in mice. Ts activation required I-J identity between carrier SC and Ts donors whereas I-A identity was required for Tcs activation. The carrier SC therefore presumably function as APC for Ts and Tcs activation by S3 since they are apparently not represented by APC present in the Ts and Tcs donors. The properties of the APC required for activation of S3-specific Ts and Tcs were determined by coupling S3 to various spleen cell subpopulations and assessing the ability of the various S3-SC populations to activate Ts and Tcs. The results indicate that Ts and Tcs are preferentially activated when S3 is presented on distinct cell types. S3-specific Ts were activated when S3 was coupled to plastic adherent cells. These cells are nonadherent to anti-Ig and nonfunctional in cyclophosphamide (Cy)-treated mice and their function is eliminated following treatment of cells with either anti-I-A or anti-I-J and C. In contrast, S3-specific Tcs were activated when S3 was coupled to anti-Ig adherent SC which bear I-A and the B cell marker J11d. These cells are functional in Cy-treated mice and their function is resistant to treatment with anti-I-J and C. Thus presentation of S3 on distinct cell types results in the preferential activation of T cells having opposing immunoregulatory function.  相似文献   

17.
We have analyzed the first-order suppressor factor secreted by an azobenzenearsonate (ABA)-specific T suppressor cell (Ts) hybridoma. Treatment of the factor with 5 mM dithiothreitol (DTT) yields two fragments with distinct phenotypes and functional capabilities. One fragment is bound by a monoclonal anti-I-J antibody, the other is not. Further, although neither molecular fragment by itself is sufficient to suppress an ABA response, a mixture of the two reconstitutes the suppressive activity. The I-J- portion of the first-order suppressor factor (TsF1) presumably guides the antigen specificity; activity of the ABA-specific Ts I-J- TsF1 factor can be reconstituted with an I-J+ subunit of a TsF molecule of either sheep red blood cell (SRBC) or ABA specificity. The genetic restriction for Igh-linked determinants of the ABA/SRBC hybrid TsF molecules is influenced by the I-J+ portion, regardless of the original antigen specificity of that molecule. The data support a two-subunit TsF model. Polyclonal ABA-specific TsF1 molecules appear to resemble the monoclonal factor in structure.  相似文献   

18.
The tolerogenic signal produced by the i.v. injection of haptenated peritoneal exudate cells can be converted to an immunogenic signal by treating the cells with antibody to the hapten before administration. We examined this phenomenon and found that immunity induced by antigen-antibody complexes, as opposed to skin sensitization, is resistant to suppressor T cell influences. This resistance to suppression is due to the activation of an I-J+, Ly-1 T cell population which adheres to the Vicia villosa lectin, all characteristics of contrasuppressor T cells. Because haptenated cells can induce immunity if injected subcutaneously or into cyclophosphamide-pretreated recipients (thereby avoiding the induction of suppressor cells), we suggest that the activation of contrasuppressor cells by antigen-antibody complexes overrides suppressive influences in the host, allowing immunity to become dominant. The possible roles of suppression and contrasuppression in channeling the effector arm of the immune response (e.g., contact sensitivity vs humoral immunity) are discussed.  相似文献   

19.
Cryptococcosis patients frequently have high levels of cryptococcal antigen in their body fluids, and the levels of circulating antigen can generally be used to predict the patient's recovery, with high or rising antigen titers indicating a poor prognosis and low or decreasing levels a good prognosis. In a previous study, we reported on a murine model for studying the effects of cryptococcal antigen on host defense mechanisms. In that work, we demonstrated that an i.v. injection of cryptococcal antigen (CneF) into CBA/J mice, to simulate the antigenemia known to occur in human cryptococcosis, induced a population of T suppressor cells (Ts1) in the lymph nodes (LN). Upon adoptive transfer, the Ts1 cells specifically suppressed the afferent limb of the delayed-type hypersensitivity (DTH) response to cryptococcal antigen. In the present study, we show that the precursors of the Ts1 cells are sensitive to low-dose cyclophosphamide treatment and that the phenotype of the Ts1 cells is Lyt-1+, Ia+ (I-J+). LN cells from CneF-injected mice or a soluble factor derived therefrom can induce in the spleens of recipient mice a second-order suppressor cell population that suppresses the efferent limb of the DTH response. The cells that induce the second-order or efferent suppressor cells have the same phenotype as the cells that appear to suppress the afferent limb of the DTH response. The findings in this study indicate that a complex regulatory mechanism is responsible for the observed suppression of the DTH response in this infectious disease model. Furthermore, the suppressive circuit thus far defined for cryptococcal antigen is similar to the antigen-specific suppressor cell pathway outlined for certain chemically defined haptenic systems.  相似文献   

20.
The induction of new suppressor T cells (Ts2) by suppressive extracts (TsF) from L-glutamic acid50L-tyrosine50 (GT) nonresponder mice was examined. Incubation of normal spleen cells with allogeneic GT-TsF for 2 days in vitro led to the generation of Ts2 cells able to suppress subsequent responses to the immunogen GT-methylated bovine serum albumin (GT-MBSA) in vivo. This induction occurred efficiently when TsF donor and target cells differed at all of H-2, including the I-J subregion. B10.BR (H-2k) GT-TsF, adsorbed on, then acid eluted from GT-Sepharose and anti-I-Jk [B10.A (3R) anti-B10.A (5R)]-Sepharose in a sequential fashion could induce BALB/c (H-2d) spleen cells to become Ts2 only if nanogram quantities of GT were added to the purified GT-TsF. This indicates a requirement for a molecule or molecular complex possessing both I-J determinants and antigen (GT)-binding specificity, together with GT itself, for Ts2 induction. The induced Ts2 are I-J+, since their function can be eliminated by treatment with anti-I-Jk plus C. These I-J determinants are coded for by the precursor of the Ts2 and do not represent passively adsorbed, I-J coded TsF, since anti-Ijk antiserum [(3R X DBA/2)F1 anti-5R] which cannot recognize the BALB/c (I-Jd) TsF used for induction still eliminates the activity of induced A/J (I-Jk) Ts2. These data provide further evidence for and information about the minimum of two T cells involved in antigen-specific suppressor T cell systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号