首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial barrier function is regulated by adherens junctions (AJs) and caveolae-mediated transcellular pathways. The opening of AJs that is observed in caveolin-1(-/-) (Cav-1(-/-)) endothelium suggests that Cav-1 is necessary for AJ assembly or maintenance. Here, using endothelial cells isolated from Cav-1(-/-) mice, we show that Cav-1 deficiency induced the activation of endothelial nitric oxide synthase (eNOS) and the generation of nitric oxide (NO) and peroxynitrite. We assessed S-nitrosylation and nitration of AJ-associated proteins to identify downstream NO redox signaling targets. We found that the GTPase-activating protein (GAP) p190RhoGAP-A was selectively nitrated at Tyr1105, resulting in impaired GAP activity and RhoA activation. Inhibition of eNOS or RhoA restored AJ integrity and diminished endothelial hyperpermeability in Cav-1(-/-) mice. Thrombin, a mediator of increased endothelial permeability, also induced nitration of p120-catenin-associated p190RhoGAP-A. Thus, eNOS-dependent nitration of p190RhoGAP-A represents a crucial mechanism for AJ disassembly and resultant increased endothelial permeability.  相似文献   

2.
本实验探讨同型半胱氨酸(Hcy)对人脐静脉内皮细胞(HUVEC)一氧化氮合酶(eNOS)的损伤机制及叶酸(FA)的拮抗效应。HUVEC原代培养,传至第3代后,将其与不同浓度Hcv(10μmol/L、30μmol/L、100μmol/L和300μmol/L)、FA(100μmol/L)或两者联合共同培养72h,用RT-PCR和免疫组织化学技术分别估测细胞eNOS mRNA水平及eNOS蛋白质量;高效液相色谱测定细胞内不对称二甲基精氨酸(ADMA)含量;并分别测定二甲基精氨酸二甲胺水解酶(DDAH)、eNOS活性及一氧化氮(NO)含量。HUVEC与不同浓度Hcy培养72h后,eNOS mRNA和蛋白质表达皆受到抑制;eNOS活性降低;NO生成减少。同时,DDAH活性降低;细胞内ADMA含量呈剂量依赖性增加。加入FA后,eNOS蛋白质水平上调;eNOS活性增强;NO生成增多。同时,DDAH活性增强,ADMA蓄积减少;但eNOS mRNA表达没有改变。Hcy对内皮细胞eNOS的损伤机制涉及eNOS酶蛋白和eNOS的基因表达两个层面,其对eNOS酶蛋白的抑制机制可能通过DDAH-ADMA通路,FA可拮抗Hcy对eNOS酶蛋白的抑制作用,显示出对HHcy有一定的保护作用。但FA对HHcy所导致的eNOS基因表达的抑制无保护效应。  相似文献   

3.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2+ released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30?min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2+ and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

4.
5.
Smith AR  Visioli F  Frei B  Hagen TM 《Aging cell》2006,5(5):391-400
Aging is the single most important risk factor for cardiovascular diseases (CVD), which are the leading cause of morbidity and mortality in the elderly. The underlying etiologies that elevate CVD risk are unknown, but increased vessel rigidity appears to be a major hallmark of cardiovascular aging. We hypothesized that post-translational signaling pathways become disrupted with age and adversely affect endothelial nitric oxide synthase (eNOS) activity and endothelial-derived nitric oxide (NO) production. Using arterial vessels and isolated endothelia from old (33-month) vs. young (3-month) F344XBrN rats, we show a loss of vasomotor function with age that is attributable to a decline in eNOS activity and NO bioavailability. An altered eNOS phosphorylation pattern consistent with its inactivation was observed: phosphorylation at the inhibitory threonine 494 site increased while phosphorylation at the activating serine 1176 site declined by 50%. Loss of phosphorylation on serine 1176 was related to higher ceramide-activated protein phosphatase 2 A activity, which was driven by a 125% increase in ceramide in aged endothelia. Elevated ceramide levels were attributable to chronic activation of neutral sphingomyelinases without a concomitant increase in ceramidase activity. This imbalance may stem from an observed 33% decline in endothelial glutathione (GSH) levels, a loss known to differentially induce neutral sphingomyelinases. Pretreating aged vessel rings with the neutral sphingomyelinase inhibitor, GW4869, significantly reversed the age-dependent loss of vasomotor function. Taken together, these results suggest a novel mechanism that at least partly explains the persistent loss of eNOS activity and endothelial-derived NO availability in aging conduit arteries.  相似文献   

6.
7.
Nitric oxide (NO), generated from L-arginine by endothelial nitric oxide synthase (eNOS), is a key endothelial-derived factor whose bioavailability is essential to the normal function of the endothelium. Endothelium dysfunction is characterized by loss of NO bioavailability because of either reduced formation or accelerated degradation of NO. We have recently reported that overexpression of vascular cytochrome P-450 (CYP) 4A in rats caused hypertension and endothelial dysfunction driven by increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a major vasoconstrictor eicosanoid in the microcirculation. To further explore cellular mechanisms underlying CYP4A-20-HETE-driven endothelial dysfunction, the interactions between 20-HETE and the eNOS-NO system were examined in vitro. Addition of 20-HETE to endothelial cells at concentrations as low as 1 nM reduced calcium ionophore-stimulated NO release by 50%. This reduction was associated with a significant increase in superoxide production. The increase in superoxide in response to 20-HETE was prevented by N(G)-nitro-L-arginine methyl ester, suggesting that uncoupled eNOS is a source of this superoxide. The response to 20-HETE was specific in that 19-HETE did not affect NO or superoxide production, and, in fact, the response to 20-HETE could be competitively antagonized by 19(R)-HETE. 20-HETE had no effect on phosphorylation of eNOS protein at serine-1179 or threonine-497 following addition of calcium ionophore; however, 20-HETE inhibited association of eNOS with 90-kDa heat shock protein (HSP90). In vivo, impaired acetylcholine-induced relaxation in arteries overexpressing CYP4A was associated with a marked reduction in the levels of phosphorylated vasodilator-stimulated phosphoprotein, an indicator of bioactive NO, that was reversed by inhibition of 20-HETE synthesis or action. Because association of HSP90 with eNOS is critical for eNOS activation and coupled enzyme activity, inhibition of this association by 20-HETE may underlie the mechanism, at least in part, by which increased CYP4A expression and activity cause endothelial dysfunction.  相似文献   

8.
The subcellular localization of endothelial nitric-oxide synthase (eNOS) is critical for optimal coupling of extracellular stimulation to nitric oxide production. Because eNOS is activated by Akt-dependent phosphorylation to produce nitric oxide (NO), we determined the subcellular distribution of eNOS phosphorylated on serine 1179 using a variety of methodologies. Based on sucrose gradient fractionation, phosphorylated-eNOS (P-eNOS) was found in both caveolin-1-enriched membranes and intracellular domains. Co-transfection of eNOS with Akt and stimulation of endothelial cells with vascular endothelial growth factor (VEGF) increased the ratio of P-eNOS to total eNOS but did not change the relative intracellular distribution between these domains. The proper localization of eNOS to intracellular membranes was required for agonist-dependent phosphorylation on serine 1179, since VEGF did not increase eNOS phosphorylation in cells transfected with a non-acylated, mistargeted form of eNOS. Confocal imaging of P-eNOS and total eNOS pools demonstrated co-localization in the Golgi region and plasmalemma of transfected cells and native endothelial cells. Finally, VEGF stimulated a large increase in NO localized in both the perinuclear region and the plasma membrane of endothelial cells. Thus, activated, phosphorylated eNOS resides in two cellular compartments and both pools are VEGF-regulated to produce NO.  相似文献   

9.
Ye H  Bi HR  Lü CL  Tang XB  Zhu DL 《生理学报》2005,57(5):612-618
15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-HETE)在低氧性肺血管收缩中起着重要作用,低氧肺动脉高压下调内皮型。氧化氮合酶(endothelial nitric oxide synthase,eNOS),使一氧化氮(nitric oxide,NO)的产量下降,但目前尚无关于15-HETE与eNOS/NO相互作用研究的报道。我们通过Wistar大鼠肺动脉环张力、牛肺动脉内皮细胞NO产量、总eNOS表达及eNOS磷酸化测定等方法对15-HETE与eNOS/NO的相互作用进行研究。首先分离人鼠肺动脉,分为eNOS抑制剂L-NAME组(0.1mmol/L)、去缸管内皮组与内皮完整组,用15-HETE作用夫鼠离体肺动脉环,测定肺动脉张力。结果表明,L-NAME组、去除内皮组与内皮完整组分别比较,15-HETE对血管的收缩作用增强,且都有统计学意义(P〈0.05)。培养牛肺动脉内皮细胞,分别用15-HETE、15-脂氧酶(15-lipoxygenase,15-LO)抑制剂[(cinnamyl 3,4-dihydroxy-[alpha]-cyanocinnamate,CDC)和(nordihydroguiairetic acid,YDGA)]处理细胞,通过Greiss方法检测亚硝酸盐含量,间接测定NO产量,与对照组比较,1μmol/L 15-HETE明显降低肺动脉内皮细胞NO水平(P〈0.05),10μmol/L CDC和0.1mmol/L NDGA显著增加NO水平(分别是P〈0.05,P〈0.01);通过Western blot检测不同时间(5,10,15,20,30,60min)eNOS的表达情况,结果显示,15-HETE的不同作用时间,没有引起eNOS表达的明显不同;用苏氨酸495位点磷酸化eNOS(Thr495)抗体进行免疫沉淀,再用总eNOS抗体和15-LO抗体通过Western blot检测磷酸化型含量,问接测定eNOS活性,结果表明15-HETE增强Thr495磷酸化型eNOS含量。由于Thr495为eNOS抑制性磷酸化位点,因此15-HETE降低eNOS活性。这些数据表明:15-HETE的缩血管作用有eNOS/NO参与,15-HETE可以通过磷酸化Thr495位点降低eNOS活性,并且首次发现磷酸化eNOS(Thr495)和15-LO之间存在蛋白质相互作用。  相似文献   

10.
Lipid modifications mediate the subcellular localization and biological activity of many proteins, including endothelial nitric oxide synthase (eNOS). This enzyme resides on the cytoplasmic aspect of the Golgi apparatus and in caveolae and is dually acylated by both N-myristoylation and S-palmitoylation. Palmitoylation-deficient mutants of eNOS release less nitric oxide (NO). We identify enzymes that palmitoylate eNOS in vivo. Transfection of human embryonic kidney 293 cells with the complementary DNA (cDNA) for eNOS and 23 cDNA clones encoding the Asp-His-His-Cys motif (DHHC) palmitoyl transferase family members showed that five clones (2, 3, 7, 8, and 21) enhanced incorporation of [3H]-palmitate into eNOS. Human endothelial cells express all five of these enzymes, which colocalize with eNOS in the Golgi and plasma membrane and interact with eNOS. Importantly, inhibition of DHHC-21 palmitoyl transferase, but not DHHC-3, in human endothelial cells reduces eNOS palmitoylation, eNOS targeting, and stimulated NO production. Collectively, our data describe five new Golgi-targeted DHHC enzymes in human endothelial cells and suggest a regulatory role of DHHC-21 in governing eNOS localization and function.  相似文献   

11.
Dual increases in nitric oxide ((*)NO) and superoxide anion (O(2)(*-)) production are one of the hallmarks of endothelial cell proliferation. Increased expression of endothelial nitric oxide synthase (eNOS) has been shown to play an important role in maintaining high levels of (*)NO generation to offset the increase in O(2)(*-) that occurs during proliferation. Although recent reports indicate that heat shock protein 90 (hsp90) associates with eNOS to increase (*)NO generation, the role of hsp90 association with eNOS during endothelial cell proliferation remains unknown. In this report, we examine the effects of endothelial cell proliferation on eNOS expression, hsp90 association with eNOS, and the mechanisms governing eNOS generation of (*)NO and O(2)(*-). Western analysis revealed that endothelial cells not only increased eNOS expression during proliferation but also hsp90 interactions with the enzyme. Pretreatment of cultures with radicicol (RAD, 20 microM), a specific inhibitor that does not redox cycle, decreased A23187-stimulated (*)NO production and increased L(omega)-nitroargininemethylester (L-NAME)-inhibitable O(2)(*-) generation. In contrast, A23187 stimulation of controls in the presence of L-NAME increased O(2)(*-) generation, confirming that during proliferation eNOS generates (*)NO. Our findings demonstrate that hsp90 plays an important role in maintaining (*)NO generation during proliferation. Inhibition of hsp90 in vascular endothelium provides a convenient mechanism for uncoupling eNOS activity to inhibit (*)NO production. This study provides new understanding of the mechanisms by which ansamycin antibiotics inhibit endothelial cell proliferation. Such information may be useful in the development and design of new antineoplastic agents in the future.  相似文献   

12.
Xia CF  Huo Y  Xue L  Zhu GY  Tang CS 《生理学报》2001,53(6):431-434
为探讨抗炎因子--白细胞介素-10(IL-10)对大鼠主动脉一氧化氮(NO)/一氧化氮合酶(NOS)系统的影响,应用Griess试剂、^3H-瓜氨酸生成及蛋白免疫印迹杂交等方法,测定IL-10孵育对血管NO释放、NOS活性及表达的影响。结果发现细菌脂多糖(LPS)呈浓度领带性地激活诱导型NOS(iNOS),促进NO生成。IL-10(10^-10-10^-8g/ml)呈浓度依赖性地上调内皮型NOS(eNOS)蛋白表达及其活性,但对iNOS活性及表达无明显影响,IL-10(10^-9-10^-8g/ml)显著抑制10μg/ml LPS诱导的NO生成和iNOS激活;而高浓度IL-10(10^-7g/ml)则上调iNOS的活性,对eNOS蛋白的表达知活性无明显影响。因此IL-10对NO/NOS系统具有双重影响,一方面可抑制炎症介质诱发的作为炎性物质的iNOS的表达及激活,另一方面可上调内皮源扩血管物质NO的释放。  相似文献   

13.
14.
尾加压素对新生大鼠心肌细胞一氧化氮合成的影响   总被引:6,自引:0,他引:6  
Li L  Yuan WJ  Pan XJ  Wang WZ  Qiu JW  Tang CS 《生理学报》2002,54(4):307-310
应用半定量逆转录-多聚酶链反应法,观察尾加压素(urotensin Ⅱ,UⅡ)对培养的新生SD大鼠心肌细胞内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)mRNA表达的影响,并测定UⅡ对心肌细胞内一氧化氮合酶(nitric oxide synthase,NOS)活性和一氧化氮(nitric oxide,NO)释放的影响。结果显示:UⅡ抑制培养的新生大鼠心肌细胞eNOS mRNA表达、抑制NOS的活性及NO释放;0.1μmol/L浓度的UⅡ呈时间依赖性抑制心肌细胞NOS的活性及NO生成。上述实验结果提示UⅡ的心血管作用可能与NO合成系统有关。  相似文献   

15.
16.
Preservation with University of Wisconsin (UW) solution has been implicated in coronary artery endothelial damage and loss of endothelium-dependent vasodilatation. Therefore, the objective of this study was to investigate the effect of this solution on basal nitric oxide (NO) release from porcine coronary endothelial cells (CEC). Cultures were exposed to cold (4 degrees C) storage in UW solution for 6, 8 and 12 h. Parallel cultures were incubated with control medium at 37 degrees C. After treatment, NO release was evaluated by nitrite production, a stable metabolite of NO. Activity of the constitutive endothelial nitric oxide synthase (eNOS) was measured by the conversion [3H]-l-arginine to [3H]-l-citrulline and eNOS protein expression by Western blotting. Nitrite production by control cells was augmented with increasing times of incubation, whereas no change was observed in those cultures preserved with UW solution. Activity of eNOS was significantly decreased compared to the respective control group by cold storage of cells for longer periods than 6 h. Such decrease was correlated with a diminished eNOS protein expression in CEC preserved with UW solution after 8- and 12-h storage. These results suggest that prolonged hypothermic storage of CEC with UW solution does not preserve basal NO release because of a certain loss of eNOS protein, which may contribute to the reported injury of heart transplants after long-term preservation.  相似文献   

17.
Low-density lipoprotein (LDL) and its oxidized derivatives are hypothesized to impair vascular function by increasing superoxide anion (O.). To investigate mechanisms in situ, isolated carotid arteries were incubated with native LDL (nLDL) or minimally oxidized LDL (mmLDL). With the use of en face fluorescent confocal microscopy and hydroethidine, an oxidant-sensitive fluorescent probe, we found that nLDL increased O. in vascular endothelium greater than fourfold by an N(omega)-nitro-L-arginine methyl ester (L-NAME)-inhibitable mechanism. In contrast, mmLDL increased O. in vascular endothelium greater than eightfold by mechanisms that were partially inhibited by L-NAME and allopurinol and essentially ablated by diphenyleneiodium. These data indicate that both nLDL and mmLDL uncouple endothelial nitric oxide synthase (eNOS) activity and that mmLDL also activates xanthine oxidase and NADPH oxidoreductase to induce greater increases in O. generation than nLDL. Western analysis revealed that both lipoproteins inhibited A-23187-stimulated association of heat shock protein 90 (HSP90) with eNOS without inhibiting phosphorylation of eNOS at serine-1179 (phospho-eNOS), an immunological index of electron flow through the enzyme. As HSP90 mediates the balance of.NO and O. generation by eNOS, these data provide new insight into the mechanisms by which oxidative stress, induced by nLDL and mmLDL, uncouple eNOS activity to increase endothelial O. generation.  相似文献   

18.
Thum T  Tsikas D  Frölich JC  Borlak J 《FEBS letters》2003,555(3):567-571
Growth hormone deficiency is linked to cardiovascular disease and particularly increased peripheral vascular resistance. Surprisingly, its role in endothelial nitric oxide (NO) synthetase (eNOS) regulation and NO release is basically unknown. We therefore studied the effects of different doses of somatotropin in cultures of a human endothelial cell line (EAhy926). We investigated expression and activity of eNOS, as well as other target genes known to be deregulated in cardiovascular disease including E-selectin and the lectin-like oxidized low density lipoprotein receptor. Treatment of cultured human endothelial cells with somatotropin resulted in significant (P<0.05) increases of eNOS gene and protein expression, as well as NO release, whereas production of intracellular reactive oxygen species was significantly reduced, at the highest somatotropin dose level. The enhanced eNOS gene/protein expression and enzyme activity correlate well. Our findings are suggestive for a novel role of growth hormone in endothelial biology, and particularly NO production.  相似文献   

19.
Oxidative stress may mediate vascular disruption associated with a loss of endothelial nitric oxide synthase (eNOS) activity and a hypersensitivity to the constrictor effects of endothelin-1 (ET-1). We hypothesize that this is due, in part, to uncoupling of ET(B) receptors from eNOS activation. Thus, we tested whether oxidative stress (OS) affects liver vascular relaxation by reducing basal and ET-1-induced NO production. Primary sinusoidal endothelial cell cultures were pretreated with H(2)O(2) (25 microM) for 1 or 6 h before a 10-min ET-1 stimulation. OS resulted in a significant basal and ET-1-induced decrease in NO production. Acute OS increased the monomeric form of the inhibitory protein caveolin-1 (1.2 +/- 0.05 vs 0.9 +/- 0.02, p < 0.01) and increased the eNOS-caveolin association as determined by coimmunoprecipitation (1.24 +/- 0.04 vs 0.97 +/- 0.04, p < 0.05). ET-1 stimulation further exacerbated these effects. Subacute OS inhibited ET-1-induced eNOS phosphorylation of serine 1177 (activation residue) (1 +/- 0.07 vs 1.6 +/- 0.04, p < 0.05) and dephosphorylation of the inhibitory residue threonine 495 (1.5 +/- 0.08 vs 0.7 +/- 0.02, p < 0.01). Additionally subacute OS resulted in dissociation of eNOS from ET(B) (0.8 +/- 0.09 vs 1.2 +/- 0.06, p < 0.05). Our findings indicate that acute and subacute oxidative stress result in the inhibition of induced nitric oxide synthase activity through distinct mechanisms dependent on caveolin-1 inhibition, ET(B) dissociation, and eNOS phosphorylation.  相似文献   

20.
We have investigated whether VEGF (vascular endothelial growth factor) regulates the proliferative capacity and eNOS (endothelial nitric oxide synthase)/NO (nitric oxide) pathway of EPCs (endothelial progenitor cells) by activating CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) signalling. EPCs were obtained from cultured mononuclear cells isolated from the peripheral blood of healthy adults. Treatment with VEGF (50 ng/ml) potently promoted CaN enzymatic activity, activation of NFAT2, cell proliferation, eNOS protein expression and NO production. Pretreatment with cyclosporin A (10 μg/ml), a pharmacological inhibitor of CaN or 11R-VIVIT, a special inhibitor of NFAT, completely abrogated the aforementioned effects of VEGF treatment and increased apoptosis. The results indicate that VEGF treatment promotes the proliferative capacity of human EPCs by activating CaN/NFAT signalling leading to increased eNOS protein expression and NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号