首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During germinal center reactions, the appearance of two specific zones are observed: the dark and the light zone. Up to now, the origin and function of these zones are poorly understood. In the framework of a stochastic and discrete model, several possible pathways of zone development during germinal center reactions are investigated. The importance of the zones in the germinal center for affinity maturation, i.e. the process of antibody optimization is discussed.  相似文献   

2.
A mathematical model for germinal centre kinetics and affinity maturation   总被引:2,自引:0,他引:2  
We present a mathematical model which reproduces experimental data on the germinal centre (GC) kinetics of the primed primary immune response and on affinity maturation observed during the reaction. We show that antigen masking by antibodies which are produced by emerging plasma cells can drive affinity maturation and provide a feedback mechanism by which the reaction is stable against variations in the initial antigen amount over several orders of magnitude. This provides a possible answer to the long-standing question of the role of antigen reduction in driving affinity maturation. By comparing model predictions with experimental results, we propose that the selection probability of centrocytes and the recycling probability of selected centrocytes are not constant but vary during the GC reaction with respect to time. It is shown that the efficiency of affinity maturation is highest if clones with an affinity for the antigen well above the average affinity in the GC leave the GC for either the memory or plasma cell pool. It is further shown that termination of somatic hypermutation several days before the end of the germinal centre reaction is beneficial for affinity maturation. The impact on affinity maturation of simultaneous initiation of memory cell formation and somatic hypermutation vs. delayed initiation of memory cell formation is discussed.  相似文献   

3.
Impaired germinal center maturation in adenosine deaminase deficiency   总被引:2,自引:0,他引:2  
Mice deficient in the enzyme adenosine deaminase (ADA) have small lymphoid organs that contain reduced numbers of peripheral lymphocytes, and they are immunodeficient. We investigated B cell deficiency in ADA-deficient mice and found that B cell development in the bone marrow was normal. However, spleens were markedly smaller, their architecture was dramatically altered, and splenic B lymphocytes showed defects in proliferation and activation. ADA-deficient B cells exhibited a higher propensity to undergo B cell receptor-mediated apoptosis than their wild-type counterparts, suggesting that ADA plays a role in the survival of cells during Ag-dependent responses. In keeping with this finding, IgM production by extrafollicular plasmablast cells was higher in ADA-deficient than in wild-type mice, thus indicating that activated B cells accumulate extrafollicularly as a result of a poor or nonexistent germinal center formation. This hypothesis was subsequently confirmed by the profound loss of germinal center architecture. A comparison of levels of the ADA substrates, adenosine and 2'-deoxyadenosine, as well resulting dATP levels and S-adenosylhomocysteine hydrolase inhibition in bone marrow and spleen suggested that dATP accumulation in ADA-deficient spleens may be responsible for impaired B cell development. The altered splenic environment and signaling abnormalities may concurrently contribute to a block in B cell Ag-dependent maturation in ADA-deficient mouse spleens.  相似文献   

4.
Affinity maturation of humoral responses to T-cell-dependent antigens occurs in germinal centers (GC). In GCs antigen-specific B cells undergo rounds of somatic mutations that alter their affinity. High-affinity mutants take over GCs very soon after they appear; the replacement rate is as high as 4 per day (Radmacher et al., Immunol. Cell Biol. 76 (1998) 373). To gain more insight into this selection process, we present a spatial model of GC reactions, where B cells compete for survival signals from follicular dendritic cells (FDC). Assuming that high-affinity B cells have increased cellular adhesion to FDCs, we obtain an affinity-based sorting of B cells on the FDC. This sorting imposes a very strong selection and therefore results in a winner-takes-all behavior. By comparing our sorting model with "affinity-proportional selection models", we show that this winner-takes-all selection is in fact required to account for the fast rates at which high affinity mutants take over GCs. Another important feature of in vivo GC reactions is that they are non-mixed, i.e. GCs contain either no high-affinity cells at all or they are dominated by high-affinity cells. We here show that this all-or-none behavior can be obtained if B cells are sorted based on their affinity on the FDC surface. Affinity-proportional selection models, in contrast, always produce mixed GCs.  相似文献   

5.
Cr2-/- mice have an impairment in humoral immunity, as shown by the decrease in the Ab titers against T cell-dependent Ags and abnormalities in germinal center formation. Germinal centers are present, but they are decreased in size and number, indicating problems in their development. In this study, we investigated whether this abnormality in germinal center development is associated with problems in the establishment of optimal affinity maturation and the generation of memory B cells, processes closely related to the germinal center reaction. We immunized the Cr2-/- animals with different Ags with or without adjuvants. We showed that, when immunized without adjuvants, complement receptors are absolutely required for optimal affinity maturation. Although limited affinity maturation is elicited in the Cr2-/- Ab response, it is decreased as compared with normal animals. Memory B cell generation is also impaired. In the presence of adjuvants, germinal center development in the Cr2-/- mice is still abnormal, as demonstrated by their decreased size and number. Surprisingly, adjuvants establish optimal affinity maturation and partially restore the amount of Ab produced during the primary response and memory B cell generation. However, adjuvants cannot improve the ability of follicular dendritic cells to retain Ags in the form of immune complexes. These observations indicate that immunization with inflammatory Ags offset some of the immunological abnormalities found in the Cr2-/- mice and show that optimal affinity maturation in the Cr2-/- mice can be achieved in the absence of normal germinal centers.  相似文献   

6.
We used a newly validated approach to identify the initiation of an autoantibody response to identify the sites and cell differentiation pathways at early and late stages of the rheumatoid factor response. The autoimmune response is mainly comprised of rapidly turning over plasmablasts that, according to BrdU labeling, TUNEL, and hypermutation data, derive from an activated B cell precursor. Surprisingly, few long-lived plasma cells were generated. The response most likely initiates at the splenic T-B zone border and continues in the marginal sinus bridging channels. Both activated B cells and plasmablasts harbor V gene mutations; large numbers of mutations in mice with long-standing response indicate that despite the rapid turnover of responding cells, clones can persist for many weeks. These studies provide insights into the unique nature of an ongoing autoimmune response and may be a model for understanding the response to therapies such as B cell depletion.  相似文献   

7.
The germinal center (GC) develops after antigen stimulation and is thought to occur at the site of various immune responses. We observed apoptotic cells within the GC using in situ end labeling (TUNEL), small amount DNA ladder assay, and RT-PCR analysis of Bcl-2 mRNA expression. Apoptosis was detected within GCs at all phases of the GC reaction by both TUNEL and DNA ladder assays. The number of TUNEL+ nuclei within the GC did not increase over the course of the GC reaction. However, the density of DNA in the ladder assay was higher in later-phase GCs. Bcl-2 mRNA expression was detected within GCs during the early phases of the GC reaction. These results indicate that accumulation of apoptotic cells and rescue from apoptosis occur within chicken GCs. In the present paper, the reasons for the accumulation of apoptotic cells will be discussed.This work was supported by Grants-in-Aid for Scientific Research (Nos. 11670322 and 10306017) from the Ministry of Education, Science, Sport and Culture, and the Ministry of Agriculture, Forestry and Fisheries of Japan (Special Scientific Research and Pioneering Research Project in Biotechnology), as well as from the Bio-oriented Technology Research Advancement Institution (BRAIN)  相似文献   

8.
9.
10.
During germinal center (GC) reactions, follicular dendritic cells are believed to select memory B lymphocytes by switching off apoptosis in the successfully binding B cells. The cellular signals involved in this process are largely unknown. Here, we show that GC B lymphocytes have a long isoform of the cellular homologue of the viral Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein (cFLIP(L)), which is capable of inhibiting death receptor-induced caspase activation. In isolated GC B cells, cFLIP(L) decays rapidly even without Fas ligation, and this results in activation of caspase activity and apoptosis. Contact with follicular dendritic cells prevents cFLIP(L) degradation and blocks all signs of apoptosis, even in the presence of anti-Fas ABS: cFLIP(L) expression is sustained by CD40 ligation as well, suggesting that at least at some stage of the GC reaction activated T cells may help selected B cells to leave the follicular dendritic cell network without becoming apoptotic.  相似文献   

11.
12.
13.
14.
The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein shows rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.  相似文献   

15.
Inducible costimulator (ICOS) is a new member of the CD28/CTLA-4 family that is expressed on activated and germinal center (GC) T cells. Recently, we reported that ICOS-deficient mice exhibited profound defects in T cell activation and effector function. Ab responses in a T-dependent primary reaction and in a murine asthma model were also diminished. In the current study, we investigate the mechanism by which ICOS regulates humoral immunity and examine B cell GC reactions in the absence of ICOS. We found that ICOS(-/-) mice, when immunized with SRBC, had smaller GCs. Furthermore, IgG1 class switching in the GCs was impaired. Remarkably, GC formation in response to a secondary recall challenge was completely absent in ICOS knockout mice. These data establish a critical role of ICOS in regulation of humoral immunity.  相似文献   

16.
17.
Research on the germinal center has tried to unravel the mechanisms that control its dynamics. In this study we focus on the termination of the germinal center reaction, which is still an open problem. We propose two hypothetical biological mechanisms that may be responsible for the control of germinal center dynamics and analyze them through mathematical models. The first one is based on the differentiation of follicular dendritic cells and/or T cells. Interaction of these cells in the differentiated state with germinal center B cells would promote B cell differentiation into memory B cells and Ab-forming cells, ending the germinal center reaction. The second mechanism applies only to a scenario without recycling and consists of the decay of a hypothetical proliferation signal for centroblasts that limits the number of cell divisions. Each of the models makes predictions that can be experimentally tested.  相似文献   

18.
Memory in the B-cell compartment: antibody affinity maturation   总被引:2,自引:0,他引:2  
In the humoral arm of the immune system, the memory response is not only more quickly elicited and of greater magnitude than the primary response, but it is also different in quality. In the recall response to antigen, the antibodies produced are of higher affinity and of different isotype (typically immunoglobulin G rather than immunoglobulin M). This maturation rests on the antigen dependence of B-cell maturation and is effected by programmed genetic modifications of the immunoglobulin gene loci. Here we consider how the B-cell response to antigen depends on the affinity of the antigen receptor interaction. We also compare and draw parallels between the two processes, which underpin the generation of secondary-response antibodies: V gene somatic hypermutation and immunoglobulin heavy-chain class switching.  相似文献   

19.
We introduce a new model for the dynamics of centroblasts and centrocytes in a germinal center. The model reduces the germinal center reaction to the elements considered as essential and embeds proliferation of centroblasts, point mutations of the corresponding antibody types represented in a shape space, differentiation to centrocytes, selection with respect to initial antigens, differentiation of positively selected centrocytes to plasma or memory cells and recycling of centrocytes to centroblasts. We use exclusively parameters with a direct biological interpretation such that, once determined by experimental data, the model gains predictive power. Based on the experiment of Han et al. (1995b) we predict that a high rate of recycling of centrocytes to centroblasts is necessary for the germinal center reaction to work reliably. Furthermore, we find a delayed start of the production of plasma and memory cells with respect to the start of point mutations, which turns out to be necessary for the optimization process during the germinal center reaction. The dependence of the germinal center reaction on the recycling probability is analysed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号