共查询到20条相似文献,搜索用时 15 毫秒
1.
Amelia-Elena Rotaru Pravin Malla Shrestha Fanghua Liu Beatrice Markovaite Shanshan Chen Kelly P. Nevin Derek R. Lovley 《Applied and environmental microbiology》2014,80(15):4599-4605
Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P. carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable, making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells. 相似文献
2.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-(14)C]acetate to (14)CO(2) when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H(2)) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H(2) levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H(2) levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H(2) as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO(2) plus H(2), driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides. 相似文献
3.
Coaggregation Facilitates Interspecies Hydrogen Transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus
下载免费PDF全文

Shun'ichi Ishii Tomoyuki Kosaka Katsutoshi Hori Yasuaki Hotta Kazuya Watanabe 《Applied microbiology》2005,71(12):7838-7845
A thermophilic syntrophic bacterium, Pelotomaculum thermopropionicum strain SI, was grown in a monoculture or coculture with a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain ΔH. Microscopic observation revealed that cells of each organism were dispersed in a monoculture independent of the growth substrate. In a coculture, however, these organisms coaggregated to different degrees depending on the substrate; namely, a large fraction of the cells coaggregated when they were grown on propionate, but relatively few cells coaggregated when they were grown on ethanol or 1-propanol. Field emission-scanning electron microscopy revealed that flagellum-like filaments of SI cells played a role in making contact with ΔH cells. Microscopic observation of aggregates also showed that extracellular polymeric substance-like structures were present in intercellular spaces. In order to evaluate the importance of coaggregation for syntrophic propionate oxidation, allowable average distances between SI and ΔH cells for accomplishing efficient interspecies hydrogen transfer were calculated by using Fick's diffusion law. The allowable distance for syntrophic propionate oxidation was estimated to be approximately 2 μm, while the allowable distances for ethanol and propanol oxidation were 16 μm and 32 μm, respectively. Considering that the mean cell-to-cell distance in the randomly dispersed culture was approximately 30 μm (at a concentration in the mid-exponential growth phase of the coculture of 5 × 107 cells ml−1), it is obvious that close physical contact of these organisms by coaggregation is indispensable for efficient syntrophic propionate oxidation. 相似文献
4.
J Yan KM Ritalahti DD Wagner FE Löffler 《Applied and environmental microbiology》2012,78(18):6630-6636
Dehalococcoides mccartyi strains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems. Dehalococcoides lacks the ability for de novo corrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B(12)) for growth. In contrast, Geobacter lovleyi, which dechlorinates tetrachloroethene to cis-1,2-dichloroethene (cis-DCE), and the nondechlorinating species Geobacter sulfurreducens have complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium. G. lovleyi-D. mccartyi strain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, and cis-DCE was dechlorinated to vinyl chloride and ethene concomitant with Dehalococcoides growth. In contrast, negligible increase in Dehalococcoides 16S rRNA gene copies and insignificant dechlorination occurred in G. sulfurreducens-D. mccartyi strain BAV1 or strain FL2 cocultures. Apparently, G. lovleyi produces a cobamide that complements Dehalococcoides' nutritional requirements, whereas G. sulfurreducens does not. Interestingly, Dehalococcoides dechlorination activity and growth could be restored in G. sulfurreducens-Dehalococcoides cocultures by adding 10 μM 5',6'-dimethylbenzimidazole. Observations made with the G. sulfurreducens-Dehalococcoides cocultures suggest that the exchange of the lower ligand generated a cobalamin, which supported Dehalococcoides activity. These findings have implications for in situ bioremediation and suggest that the corrinoid metabolism of Dehalococcoides must be understood to faithfully predict, and possibly enhance, reductive dechlorination activities. 相似文献
5.
Mercury Methylation by Interspecies Hydrogen and Acetate Transfer between Sulfidogens and Methanogens 总被引:2,自引:2,他引:2
下载免费PDF全文

Cocultures of Desulfovibrio desulfuricans and Methanococcus maripaludis grew on sulfate-free lactate medium while vigorously methylating Hg2+. Individually, neither bacterium could grow or methylate mercury in this medium. Similar synergistic growth of sulfidogens and methanogens may create favorable conditions for Hg2+ methylation in low-sulfate anoxic freshwater sediments. 相似文献
6.
Anne D. van Diepeningen Alfons J.M. Debets Rolf F. Hoekstra 《Fungal genetics and biology : FG & B》1998,25(3):171-180
Intra- and interspecies transfer of dsRNA viruses between blackAspergilliandAspergillus nidulansstrains has been investigated using protoplast fusion. We found interspecies transfer of virus in all combinations of blackAspergillusandA. nidulansstrains and vice versa. Using the same conditions, intraspecies virus transfer among heterokaryon incompatible strains was also tested. Whereas such transfer was always found amongA. nidulansstrains, transfer among blackAspergilliwas frequently unsuccessful. The lack of virus transfer between blackAspergillusisolates was further investigated by using a mitochondrial oligomycin resistance marker as a positive control for cytoplasmic exchange. These experiments showed independent transfer of the oligomycin resistance and dsRNA viruses during protoplast fusion of heterokaryon incompatible blackAspergilli. The inefficient transfer of dsRNA viruses between blackAspergilliis not caused by absolute resistance to viruses but may be related to heterokaryon incompatibility reactions that operate intraspecifically. Consequences for the dynamics of mycoviruses in populations of blackAspergilliare discussed. 相似文献
7.
Sulfate-Dependent Interspecies H2 Transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during Coculture Metabolism of Acetate or Methanol 总被引:2,自引:5,他引:2
下载免费PDF全文

We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 μmol of H2 per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H2 concentration was ≤2 μmol/liter. The fractions of 14CO2 produced from [14C]methanol and 2-[14C]acetate increased from 0.26 and 0.16, respectively, in pure culture to 0.59 and 0.33, respectively, in coculture. Under these conditions, approximately 42% of the available electron equivalents derived from methanol or acetate were transferred and were utilized by D. vulgaris to reduce approximately 33 μmol of sulfate per 100 μmol of substrate consumed. As a direct consequence, methane formation in cocultures was two-thirds that observed in pure cultures. The addition of 5.0 mM sodium molybdate or exogenous H2 decreased the effects of D. vulgaris on the metabolism of M. barkeri. An analysis of growth and carbon and electron flow patterns demonstrated that sulfate-dependent interspecies H2 transfer from M. barkeri to D. vulgaris resulted in less methane production, increased CO2 formation, and sulfide formation from substrates not directly utilized by the sulfate reducer as electron donors for energy metabolism and growth. 相似文献
8.
G. Dennis Sprott Chantal J. Dicaire Christian G. Choquet Girishchandra B. Patel Irena Ekiel 《Applied microbiology》1993,59(3):912-914
Hydroxylated diether lipids are the most abundant lipids in Methanosarcina acetivorans, Methanosarcina thermophila, and Methanosarcina barkeri MS and Fusaro, regardless of the substrate used for growth. Structural analysis of the lipid moiety freed of polar head groups revealed that the hydroxydiether lipids of all the Methanosarcina strains were hydroxylated at position 3 of sn-2 phytanyl chains. The finding that Methanosarcina strains synthesize the same hydroxydiether structure suggests that this is a taxonomic characteristic of the genus. Methanococcus voltae produced minor amounts of the 3-hydroxydiether characteristic of Methanosarcina spp. and also the 3′-hydroxydiether described previously for Methanosaeta concilii. 相似文献
9.
We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 mumol of H(2) per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H(2) concentration was =2 mumol/liter. The fractions of CO(2) produced from [C]methanol and 2-[C]acetate increased from 0.26 and 0.16, respectively, in pure culture to 0.59 and 0.33, respectively, in coculture. Under these conditions, approximately 42% of the available electron equivalents derived from methanol or acetate were transferred and were utilized by D. vulgaris to reduce approximately 33 mumol of sulfate per 100 mumol of substrate consumed. As a direct consequence, methane formation in cocultures was two-thirds that observed in pure cultures. The addition of 5.0 mM sodium molybdate or exogenous H(2) decreased the effects of D. vulgaris on the metabolism of M. barkeri. An analysis of growth and carbon and electron flow patterns demonstrated that sulfate-dependent interspecies H(2) transfer from M. barkeri to D. vulgaris resulted in less methane production, increased CO(2) formation, and sulfide formation from substrates not directly utilized by the sulfate reducer as electron donors for energy metabolism and growth. 相似文献
10.
Carmen Coronado Manuel Megias Francisco Ruiz-Berraquero Antonio J. Palomares 《FEMS microbiology letters》1989,59(3):289-296
Abstract DNA fragments representatives of ndv A and ndv B have been used as probes against genomic DNAs from different Rhizobium and Bradyrhizobium species. ndv A and ndv B homologues were found in all species, indicating extensive conservation of these genes. All Rhizobium species show chromosomal localization of ndv A and ndv B homologues. 相似文献
11.
Disaggregation of Methanosarcina spp. and Growth as Single Cells at Elevated Osmolarity 总被引:3,自引:1,他引:3
下载免费PDF全文

The effect of medium osmolarity on the morphology and growth of Methanosarcina barkeri, Methanosarcina thermophila, Methanosarcina mazei, Methanosarcina vacuolata, and Methanosarcina acetivorans was examined. Each strain was adapted for growth in NaCl concentrations ranging from 0.05 to 1.0 M. Methanosarcina spp. isolated from both marine and nonmarine sources exhibited similar growth characteristics at all NaCl concentrations tested, demonstrating that these species are capable of adapting to a similar range of medium osmolarities. Concomitant with the adaptation in 0.4 to 1.0 M NaCl, all strains disaggregated and grew as single cells rather than in the characteristic multicellular aggregates. Aggregated cells had a methanochondroitin outer layer, while disaggregated single cells lacked the outer layer but retained the protein S-layer adjacent to the cell membrane. Synthesis of glucuronic acid, a major component of methanochondroitin, was reduced 20-fold in the single-cell form of M. barkeri when compared with synthesis in aggregated cells. Strains with the methanochondroitin outer cell layer exhibited enhanced stability at low (<0.2 M NaCl) osmolarity and grew at higher temperatures. Disaggregated cells could be converted back to aggregated cells by gradually readapting cultures to lower NaCl (<0.2 M) and Mg2+ (<0.005 M) concentrations. Disaggregated Methanosarcina spp. could also be colonized and replica plated with greater than 95% recovery rates on solidified agar basal medium that contained 0.4 to 0.6 M NaCl and either trimethylamine, methanol, or acetate as the substrate. The ability to disaggregate and grow Methanosarcina spp. as viable, detergent-sensitive, single cells on agar medium makes these species amenable to mutant selection and screening for genetic studies and enables cells to be gently lysed for the isolation of intact genetic material. 相似文献
12.
An Anaerobic, Intrachamber Incubator for Growth of Methanosarcina spp. on Methanol-Containing Solid Media 总被引:2,自引:0,他引:2
下载免费PDF全文

To simplify the incubation of Methanosarcina spp. on solid agar medium, a two-port, manual, rectangular air lock was modified to serve as an anaerobic incubator. In one operation, it is possible to incubate 153 petri plates, the equivalent of 11 standard anaerobic jars, with plating efficiencies identical to those of traditional protocols. 相似文献
13.
This study determines the growth kinetics of thermophilic strains of Methanosarcina spp. from full-scale thermophilic biogas plants. The complete set of kinetic parameters, including maximum specific growth rate μ(max), half saturation constant K(S), acetate threshold concentration and cell growth yield Y(X/S), were determined for six Methanosarcina strains newly isolated from full-scale reactors and the type strain Methanosarcina thermophila TM-1(T). The kinetic experiments were performed in media supplemented with acetate and activated carbon at the optimum growth temperatures of the individual strains, 50-55 degrees C. The μ(max) values of the isolates were in the range of 0.044-0.064 h(-1), the K(S) ranged from 6.5 to 24.7 mM acetate and the threshold for acetate utilization from 0.11 to 0.40 mM. The cell growth yields of the strains were between 0.78 and 2.97 g dry weight cells mol(-1) acetate. The six isolates exhibited significantly higher μ(max) and had higher affinity to acetate than the type strain M. thermophila TM-1(T). Generally, the affinities of thermophilic Methanosarcina strains tested in this study cover a similar range to those reported in the literature for mesophilic Methanosarcina spp. with acetate as substrate. The strains isolated from plants treating mixtures of animal manures and industrial organic wastes had higher affinity for acetate and lower thresholds than strains isolated from reactors operating solely on manures. 相似文献
14.
Methanosarcina sp. strain TM-1 and Methanosarcina acetivorans produced and consumed H(2) to maintain H(2) partial pressures of 16 to 92 Pa in closed cultures during growth on acetate. Strain TM-1 produced H(2) continuously when H(2) was continuously removed from the culture. The potential physiological significance of H(2) in acetate metabolism to methane is discussed. 相似文献
15.
16.
17.
H. L. Chance 《Biotechnic & histochemistry》1955,30(2):53-58
The cells were smeared in water or water which had stood over about 10 mg. of magnesium powder per ml. for 30 minutes or longer. After the smear was dry and whitish in appearance it was held over a beaker of hot water (60-65° C.) until it was translucent or becoming translucent and exposed immediately to hydrogen chloride (gas) for a few seconds. After drying, it was covered with a 0.1% aqueous solution of neutral red for 5-8 minutes. The excess stain was washed from the slide with water and, while wet, placed in a saturated aqueous solution of mercuric nitrate for 5-15 seconds. The smear was rinsed in water and allowed to dry. When dry the slide was placed on a 50° C. warm plate and covered with a thin film of a 5% aqueous solution of nigrosin adjusted to a pH of about 3. The film dried quickly and upon cooling was ready for study. The stained material in the cells varied in shape and location with the moisture content of the smear and the time of exposure to hydrogen chloride. In the area of the smear directly exposed to the gas, the cells in general possessed a round or oval stained structure. Where there was little, if any, exposure to the gas the cells were uniformly stained. There were various gradations in the location and shape of the stained material in the cells from the one extreme to the other. 相似文献
18.
Molecular Identification of the Catabolic Vinyl Chloride Reductase from Dehalococcoides sp. Strain VS and Its Environmental Distribution 总被引:2,自引:0,他引:2
下载免费PDF全文

Jochen A. Müller Bettina M. Rosner Gregory von Abendroth Galit Meshulam-Simon Perry L. McCarty Alfred M. Spormann 《Applied microbiology》2004,70(8):4880-4888
19.
The growth of a strain of Rhizobium trifolii and of R. meliloti was studied in broth and peat cultures to determine the relative toxicity of Na+ and Cl- . The following salts were added in a range of concentrations: Na2 HPO4 as a source of Na+ , CaCl2 .2H2 O as a source of Cl- , and NaCl. Disodium hydrogen orthophosphate affected the growth rate of both strains in broth culture but not in peat culture. Unexpectedly, calcium chloride was more toxic than NaCl in broth and peat culture. The toxicity of NaCl can be ascribed to the Cl- . Rhizobium meliloti strains grew on 3·5% NaCl after adaptation during a long period. Rhizobia for soya bean and cowpea grew at 0·5% NaCl and those for clover and pea, at 1·0% NaCl. 相似文献
20.
Jumpei Washio Yuko Shimada Masakazu Yamada Ryouichi Sakamaki Nobuhiro Takahashi 《Applied and environmental microbiology》2014,80(14):4184-4188
Indigenous oral bacteria in the tongue coating such as Veillonella have been identified as the main producers of hydrogen sulfide (H2S), one of the major components of oral malodor. However, there is little information on the physiological properties of H2S production by oral Veillonella such as metabolic activity and oral environmental factors which may affect H2S production. Thus, in the present study, the H2S-producing activity of growing cells, resting cells, and cell extracts of oral Veillonella species and the effects of oral environmental factors, including pH and lactate, were investigated. Type strains of Veillonella atypica, Veillonella dispar, and Veillonella parvula were used. These Veillonella species produced H2S during growth in the presence of l-cysteine. Resting cells of these bacteria produced H2S from l-cysteine, and the cell extracts showed enzymatic activity to convert l-cysteine to H2S. H2S production by resting cells was higher at pH 6 to 7 and lower at pH 5. The presence of lactate markedly increased H2S production by resting cells (4.5- to 23.7-fold), while lactate had no effect on enzymatic activity in cell extracts. In addition to H2S, ammonia was produced in cell extracts of all the strains, indicating that H2S was produced by the catalysis of cystathionine γ-lyase (EC 4.4.1.1). Serine was also produced in cell extracts of V. atypica and V. parvula, suggesting the involvement of cystathionine β-synthase lyase (EC 4.2.1.22) in these strains. This study indicates that Veillonella produce H2S from l-cysteine and that their H2S production can be regulated by oral environmental factors, namely, pH and lactate. 相似文献