首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P. carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable, making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.  相似文献   

2.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-(14)C]acetate to (14)CO(2) when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H(2)) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H(2) levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H(2) levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H(2) as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO(2) plus H(2), driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides.  相似文献   

3.
Interspecies hydrogen transfer was studied in Desulfovibrio vulgaris-Methanosarcina barkeri mixed cultures. Experiments were performed under batch and continuous growth culture conditions. Lactate or pyruvate was used as an energy source. In batch culture and after 30 days of simultaneous incubation, these organisms were found to yield 1.5 mol of methane and 1.5 mol of carbon dioxide per mol of lactate fermented. When M. barkeri served as the hydrogen acceptor, growth yields of D. vulgaris were higher compared with those obtained on pyruvate without any electron acceptor other than protons. In continuous culture, all of the carbon derived from the oxidation of lactate was recovered as methane and carbon dioxide, provided the dilution rate was minimal. Increasing the dilution rate induced a gradual accumulation of acetate, causing acetate metabolism to cease at above μ = 0.05 h−1. Under these conditions all of the methane produced originated from carbon dioxide. The growth yields of D. vulgaris were measured when sulfate or M. barkeri was the electron acceptor. Two key observations resulted from the present study. First, although sulfate was substituted by M. barkeri, metabolism of D. vulgaris was only slightly modified. The coculture-fermented lactate produced equimolar quantities of carbon dioxide and methane. Second, acetogenesis and methane formation from acetate were completely separable.  相似文献   

4.
A thermophilic syntrophic bacterium, Pelotomaculum thermopropionicum strain SI, was grown in a monoculture or coculture with a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain ΔH. Microscopic observation revealed that cells of each organism were dispersed in a monoculture independent of the growth substrate. In a coculture, however, these organisms coaggregated to different degrees depending on the substrate; namely, a large fraction of the cells coaggregated when they were grown on propionate, but relatively few cells coaggregated when they were grown on ethanol or 1-propanol. Field emission-scanning electron microscopy revealed that flagellum-like filaments of SI cells played a role in making contact with ΔH cells. Microscopic observation of aggregates also showed that extracellular polymeric substance-like structures were present in intercellular spaces. In order to evaluate the importance of coaggregation for syntrophic propionate oxidation, allowable average distances between SI and ΔH cells for accomplishing efficient interspecies hydrogen transfer were calculated by using Fick's diffusion law. The allowable distance for syntrophic propionate oxidation was estimated to be approximately 2 μm, while the allowable distances for ethanol and propanol oxidation were 16 μm and 32 μm, respectively. Considering that the mean cell-to-cell distance in the randomly dispersed culture was approximately 30 μm (at a concentration in the mid-exponential growth phase of the coculture of 5 × 107 cells ml−1), it is obvious that close physical contact of these organisms by coaggregation is indispensable for efficient syntrophic propionate oxidation.  相似文献   

5.
Dehalococcoides mccartyi strains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems. Dehalococcoides lacks the ability for de novo corrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B(12)) for growth. In contrast, Geobacter lovleyi, which dechlorinates tetrachloroethene to cis-1,2-dichloroethene (cis-DCE), and the nondechlorinating species Geobacter sulfurreducens have complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium. G. lovleyi-D. mccartyi strain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, and cis-DCE was dechlorinated to vinyl chloride and ethene concomitant with Dehalococcoides growth. In contrast, negligible increase in Dehalococcoides 16S rRNA gene copies and insignificant dechlorination occurred in G. sulfurreducens-D. mccartyi strain BAV1 or strain FL2 cocultures. Apparently, G. lovleyi produces a cobamide that complements Dehalococcoides' nutritional requirements, whereas G. sulfurreducens does not. Interestingly, Dehalococcoides dechlorination activity and growth could be restored in G. sulfurreducens-Dehalococcoides cocultures by adding 10 μM 5',6'-dimethylbenzimidazole. Observations made with the G. sulfurreducens-Dehalococcoides cocultures suggest that the exchange of the lower ligand generated a cobalamin, which supported Dehalococcoides activity. These findings have implications for in situ bioremediation and suggest that the corrinoid metabolism of Dehalococcoides must be understood to faithfully predict, and possibly enhance, reductive dechlorination activities.  相似文献   

6.
Intra- and interspecies transfer of dsRNA viruses between blackAspergilliandAspergillus nidulansstrains has been investigated using protoplast fusion. We found interspecies transfer of virus in all combinations of blackAspergillusandA. nidulansstrains and vice versa. Using the same conditions, intraspecies virus transfer among heterokaryon incompatible strains was also tested. Whereas such transfer was always found amongA. nidulansstrains, transfer among blackAspergilliwas frequently unsuccessful. The lack of virus transfer between blackAspergillusisolates was further investigated by using a mitochondrial oligomycin resistance marker as a positive control for cytoplasmic exchange. These experiments showed independent transfer of the oligomycin resistance and dsRNA viruses during protoplast fusion of heterokaryon incompatible blackAspergilli. The inefficient transfer of dsRNA viruses between blackAspergilliis not caused by absolute resistance to viruses but may be related to heterokaryon incompatibility reactions that operate intraspecifically. Consequences for the dynamics of mycoviruses in populations of blackAspergilliare discussed.  相似文献   

7.
Cocultures of Desulfovibrio desulfuricans and Methanococcus maripaludis grew on sulfate-free lactate medium while vigorously methylating Hg2+. Individually, neither bacterium could grow or methylate mercury in this medium. Similar synergistic growth of sulfidogens and methanogens may create favorable conditions for Hg2+ methylation in low-sulfate anoxic freshwater sediments.  相似文献   

8.
We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 μmol of H2 per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H2 concentration was ≤2 μmol/liter. The fractions of 14CO2 produced from [14C]methanol and 2-[14C]acetate increased from 0.26 and 0.16, respectively, in pure culture to 0.59 and 0.33, respectively, in coculture. Under these conditions, approximately 42% of the available electron equivalents derived from methanol or acetate were transferred and were utilized by D. vulgaris to reduce approximately 33 μmol of sulfate per 100 μmol of substrate consumed. As a direct consequence, methane formation in cocultures was two-thirds that observed in pure cultures. The addition of 5.0 mM sodium molybdate or exogenous H2 decreased the effects of D. vulgaris on the metabolism of M. barkeri. An analysis of growth and carbon and electron flow patterns demonstrated that sulfate-dependent interspecies H2 transfer from M. barkeri to D. vulgaris resulted in less methane production, increased CO2 formation, and sulfide formation from substrates not directly utilized by the sulfate reducer as electron donors for energy metabolism and growth.  相似文献   

9.
10.
Hydroxylated diether lipids are the most abundant lipids in Methanosarcina acetivorans, Methanosarcina thermophila, and Methanosarcina barkeri MS and Fusaro, regardless of the substrate used for growth. Structural analysis of the lipid moiety freed of polar head groups revealed that the hydroxydiether lipids of all the Methanosarcina strains were hydroxylated at position 3 of sn-2 phytanyl chains. The finding that Methanosarcina strains synthesize the same hydroxydiether structure suggests that this is a taxonomic characteristic of the genus. Methanococcus voltae produced minor amounts of the 3-hydroxydiether characteristic of Methanosarcina spp. and also the 3′-hydroxydiether described previously for Methanosaeta concilii.  相似文献   

11.
We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 mumol of H(2) per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H(2) concentration was 相似文献   

12.
Microbial formate production and consumption during syntrophic conversion of ethanol or lactate to methane was examined in purified flocs and digestor contents obtained from a whey-processing digestor. Formate production by digestor contents or purified digestor flocs was dependent on CO2 and either ethanol or lactate but not H2 gas as an electron donor. During syntrophic methanogenesis, flocs were the primary site for formate production via ethanol-dependent CO2 reduction, with a formate production rate and methanogenic turnover constant of 660 μM/h and 0.044/min, respectively. Floc preparations accumulated fourfold-higher levels of formate (40 μM) than digestor contents, and the free flora was the primary site for formate cleavage to CO2 and H2 (90 μM formate per h). Inhibition of methanogenesis by CHCl3 resulted in formate accumulation and suppression of syntrophic ethanol oxidation. H2 gas was an insignificant intermediary metabolite of syntrophic ethanol conversion by flocs, and its exogenous addition neither stimulated methanogenesis nor inhibited the initial rate of ethanol oxidation. These results demonstrated that >90% of the syntrophic ethanol conversion to methane by mixed cultures containing primarily Desulfovibrio vulgaris and Methanobacterium formicicum was mediated via interspecies formate transfer and that <10% was mediated via interspecies H2 transfer. The results are discussed in relation to biochemical thermodynamics. A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens.  相似文献   

13.
Abstract DNA fragments representatives of ndv A and ndv B have been used as probes against genomic DNAs from different Rhizobium and Bradyrhizobium species. ndv A and ndv B homologues were found in all species, indicating extensive conservation of these genes. All Rhizobium species show chromosomal localization of ndv A and ndv B homologues.  相似文献   

14.
The effect of medium osmolarity on the morphology and growth of Methanosarcina barkeri, Methanosarcina thermophila, Methanosarcina mazei, Methanosarcina vacuolata, and Methanosarcina acetivorans was examined. Each strain was adapted for growth in NaCl concentrations ranging from 0.05 to 1.0 M. Methanosarcina spp. isolated from both marine and nonmarine sources exhibited similar growth characteristics at all NaCl concentrations tested, demonstrating that these species are capable of adapting to a similar range of medium osmolarities. Concomitant with the adaptation in 0.4 to 1.0 M NaCl, all strains disaggregated and grew as single cells rather than in the characteristic multicellular aggregates. Aggregated cells had a methanochondroitin outer layer, while disaggregated single cells lacked the outer layer but retained the protein S-layer adjacent to the cell membrane. Synthesis of glucuronic acid, a major component of methanochondroitin, was reduced 20-fold in the single-cell form of M. barkeri when compared with synthesis in aggregated cells. Strains with the methanochondroitin outer cell layer exhibited enhanced stability at low (<0.2 M NaCl) osmolarity and grew at higher temperatures. Disaggregated cells could be converted back to aggregated cells by gradually readapting cultures to lower NaCl (<0.2 M) and Mg2+ (<0.005 M) concentrations. Disaggregated Methanosarcina spp. could also be colonized and replica plated with greater than 95% recovery rates on solidified agar basal medium that contained 0.4 to 0.6 M NaCl and either trimethylamine, methanol, or acetate as the substrate. The ability to disaggregate and grow Methanosarcina spp. as viable, detergent-sensitive, single cells on agar medium makes these species amenable to mutant selection and screening for genetic studies and enables cells to be gently lysed for the isolation of intact genetic material.  相似文献   

15.
Methanosarcina sp. strain TM-1 and Methanosarcina acetivorans produced and consumed H2 to maintain H2 partial pressures of 16 to 92 Pa in closed cultures during growth on acetate. Strain TM-1 produced H2 continuously when H2 was continuously removed from the culture. The potential physiological significance of H2 in acetate metabolism to methane is discussed.  相似文献   

16.
To simplify the incubation of Methanosarcina spp. on solid agar medium, a two-port, manual, rectangular air lock was modified to serve as an anaerobic incubator. In one operation, it is possible to incubate 153 petri plates, the equivalent of 11 standard anaerobic jars, with plating efficiencies identical to those of traditional protocols.  相似文献   

17.
This study determines the growth kinetics of thermophilic strains of Methanosarcina spp. from full-scale thermophilic biogas plants. The complete set of kinetic parameters, including maximum specific growth rate μ(max), half saturation constant K(S), acetate threshold concentration and cell growth yield Y(X/S), were determined for six Methanosarcina strains newly isolated from full-scale reactors and the type strain Methanosarcina thermophila TM-1(T). The kinetic experiments were performed in media supplemented with acetate and activated carbon at the optimum growth temperatures of the individual strains, 50-55 degrees C. The μ(max) values of the isolates were in the range of 0.044-0.064 h(-1), the K(S) ranged from 6.5 to 24.7 mM acetate and the threshold for acetate utilization from 0.11 to 0.40 mM. The cell growth yields of the strains were between 0.78 and 2.97 g dry weight cells mol(-1) acetate. The six isolates exhibited significantly higher μ(max) and had higher affinity to acetate than the type strain M. thermophila TM-1(T). Generally, the affinities of thermophilic Methanosarcina strains tested in this study cover a similar range to those reported in the literature for mesophilic Methanosarcina spp. with acetate as substrate. The strains isolated from plants treating mixtures of animal manures and industrial organic wastes had higher affinity for acetate and lower thresholds than strains isolated from reactors operating solely on manures.  相似文献   

18.
Methanosarcina sp. strain TM-1 and Methanosarcina acetivorans produced and consumed H(2) to maintain H(2) partial pressures of 16 to 92 Pa in closed cultures during growth on acetate. Strain TM-1 produced H(2) continuously when H(2) was continuously removed from the culture. The potential physiological significance of H(2) in acetate metabolism to methane is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号