首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein which acts primarily to stimulate the proliferation, differentiation and activation of committed progenitor cells of the neutrophil–granulocyte lineage into functionally mature neutrophils. The traditional biological assays employed to detect G-CSF are a myeloid bone marrow colony assay, a factor-dependent cell line specific for G-CSF and commercially available immunoassays. However, these methods will not distinguish between glycosylated and non-glycosylated forms of the molecule. In this study high-performance capillary electrophoresis (HPCE) was used to analyse glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factor (r-met-hG-CSF). Glycosylated G-CSF preparations contained human serum albumin (HSA), added as a protein carrier. Glycosylated and non-glycosylated G-CSFs were prepared in 40 mM Na2HPO4 buffer, pH 2.5, containing hydroxypropylmethylcellulose (HPMC) or 50 mM Na2HPO4 buffer, pH 9.0. Glycosylated G-CSF could be separated into two distinct glycoform populations at the lower pH studied. Differences in migration time and peak shape between glycosylated and non-glycosylated G-CSF were demonstrated. HPCE analysis of G-CSF produced using a baculovirus expression vector system revealed a further distinct G-CSF glycoform and demonstrated the resolving power of the technique.  相似文献   

2.
Levels of serum granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) in patients with various leukocyte disorders were estimated by enzyme linked immunosorbent assay (ELISA). Some cases of acute myelogenous leukemia and aplastic anemia showed elevated serum levels of G-CSF and/or GM-CSF, whereas almost all of 23 healthy controls showed G-CSF and GM-CSF levels lower than 100 pg/ml. High levels of both types of CSF were noted in patients with granulocytosis due to infection. These levels became lower after resolution of the infection. Daily changes in serum CSF levels were also examined in a patient with autoimmune neutropenia, and it was found that the peripheral neutrophilic granulocyte count changed almost in parallel with the serum G-CSF level but not with GM-CSF, following the pattern with a delay of about 4–5 h, suggesting the possibility that G-CSF mainly regulates peripheral neutrophil circulation.  相似文献   

3.
Endothelial cells are a potent source of hematopoietic growth factors when stimulated by soluble products of monocytes. Interleukin 1 (IL 1) is released by activated monocytes and is a mediator of the inflammatory response. We determined whether purified recombinant human IL 1 could stimulate cultured human umbilical vein endothelial cells to release hematopoietic growth factors. As little as 1 U/ml of IL 1 stimulated growth factor production by the endothelial cells, and increasing amounts of IL 1 enhanced growth factor production in a dose-dependent manner. Growth factor production increased within 2 to 4 hr and remained elevated for more than 48 hr. To investigate the molecular basis for these findings, oligonucleotide probes for granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), and multi-CSF were hybridized to poly(A)-containing RNA prepared from unstimulated and IL 1-stimulated endothelial cells. Significant levels of GM-CSF and G-CSF, but not M-CSF or multi-CSF, mRNA were detected in the IL 1-stimulated endothelial cells. Biological assays performed on the IL 1-stimulated endothelial cell-conditioned medium confirmed the presence of both GM- and G-CSF. These results demonstrate that human recombinant IL 1 can stimulate endothelial cells to release GM-CSF and G-CSF, and provide a mechanism by which IL 1 could modulate both granulocyte production and function during the course of an inflammatory response.  相似文献   

4.
The cytokines interleukin-8 (IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the extracellular release of arachidonate metabolites from ionophore-stimulated neutrophils by 145 +/- 10% (mean +/- S.E.M., n = 13) and 182 +/- 11% (n = 16), respectively. To determine whether enhanced leukotriene production mediates the effects of these cytokines on neutrophil activity, two different specific arachidonate 5-lipoxygenase (5-LO) inhibitors, piriprost and MK-886, were used to inhibit leukotriene synthesis. Neither inhibitor affected the upregulation of CD11b beta(2)-integrin expression or priming of superoxide generation stimulated by IL-8 and GM-CSF. It is concluded that leukotrienes do not mediate either the direct or priming effects of these cytokines and that these classes of anti-inflammatory drugs are therefore unlikely to inhibit the effects of IL-8 and GM-CSF on neutrophil activation.  相似文献   

5.
We studied the effect of G-CSF on TLR agonist-induced cytokine production in human neutrophils. Human neutrophils produced IL-8 and TNF-α in response to stimulation with TLR agonists such as LPS and N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteinyl-seryl-(lysyl)(3)-lysine. This response was dependent on activation of ERK, p38, and PI3K, but not JNK. TLR agonist-induced cytokine production in neutrophils was inhibited by G-CSF, whereas it was enhanced by GM-CSF, and GM-CSF-mediated enhancement was attenuated by G-CSF. G-CSF and GM-CSF did not affect TLR agonist-induced phosphorylation of ERK, p38, JNK, Akt, and IκBα. STAT3 activation was much greater in G-CSF-stimulated neutrophils than that in GM-CSF-stimulated cells. G-CSF-mediated STAT3 phosphorylation and inhibition of TLR agonist-induced cytokine production were prevented by pretreatment of cells with AG-490 (JAK2 inhibitor). These findings suggest that G-CSF and GM-CSF exert the opposite effects on TLR agonist-induced cytokine production, and G-CSF negatively regulates TLR agonist-induced cytokine production in neutrophils via activation of STAT3.  相似文献   

6.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) was studied for its ability to stimulate the synthesis and release of the inflammatory mediator platelet-activating factor (PAF) from human neutrophils as measured by bioassay and incorporation of [3H]acetate into PAF. GM-CSF stimulated the synthesis but not the release of PAF from neutrophils. PAF synthesis took place in a time- and concentration-dependent manner, was dependent on a pertussis toxin-sensitive G protein and could be inhibited by antibodies to GM-CSF. On the other hand, pre-incubation of neutrophils with GM-CSF followed by stimulation with the bacterial tripeptide formylmethionylleucylphenylalanine caused PAF synthesis and release. The effect of GM-CSF was qualitative and not simply the result of larger amounts of PAF being synthesized since similar amounts were generated in response to the calcium ionophore A23187 but no released PAF could be detected. In functional studies GM-CSF stimulated superoxide anion generation from neutrophils with a time and dose relationship that paralleled PAF synthesis. In addition, the serine protease inhibitor L-1-tosylamide-2-phenylethyl chloromethyl ketone, which inhibits PAF synthesis, reduced PAF accumulation as well as superoxide generation, raising the possibility of a causal relationship between cell-associated PAF and cell activation. These results identify PAF as a direct product of GM-CSF stimulation in neutrophils where it may play a role in signal transduction and demonstrate that PAF is released only after subsequent neutrophil stimulation. The selective release of PAF may play a role in regulating and amplifying the inflammatory response.  相似文献   

7.
Highly purified mouse colony-stimulating factors (CSF) were tested for their effect on neutrophil cytotoxic function in a homologous antibody-dependent cell-mediated cytotoxicity (ADCC) assay in which TNP-coupled mouse thymoma cells coated with mouse anti-TNP antibodies were used as targets, and purified normal mouse bone marrow neutrophils or induced peritoneal neutrophils were used as effector cells. Biochemically pure granulocyte-macrophage (GM)- and granulocyte (G)-CSF enhanced the cytotoxic activity of neutrophils obtained from both sources, allowing them to kill target cells at low antibody concentrations. Furthermore, GM- and G-CSF showed an additive effect, suggesting either the presence of separate receptors for GM- and G-CSF or of separate subsets of neutrophils. Induced peritoneal neutrophils showed a higher level of basal cytotoxic activity than did bone marrow neutrophils, suggesting neutrophil activation in vivo, but both reached similar levels of cytotoxicity upon maximal stimulation with CSF. In addition, CSF was found to be cross-reactive between mouse and human species in their enhancement of neutrophil cytotoxicity. By testing purified mouse CSF on human neutrophils, it could be shown that G-CSF and GM-CSF are functionally distinct molecules, because only G-CSF enhanced ADCC by human neutrophils. These experiments show that the purified factors that control the production of neutrophils by progenitor cells in vitro also activate differentiated neutrophils to carry out their cytotoxic activity in a more effective manner.  相似文献   

8.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine which produces diverse biological effects in target cells of myeloid origin. GM-CSF enhances the production of superoxide anion (O2-) by mature neutrophils in response to chemotactic peptides such as formyl-methionyl-leucyl-phenylalanine (fMLP), but alone it has no effect on this system. This process has been termed "priming." fMLP activates neutrophils via a pertussis toxin-sensitive GTP-binding protein, leading to the rapid production of the second messengers diacylglycerol (DAG) and inositol trisphosphate, via phosphatidylinositol turnover, and arachidonic acid (AA) by a presumptive phospholipase A2-mediated mechanism. All three second messengers may lead to the generation of O2-. We investigated the effect of priming of GM-CSF on these systems. GM-CSF had no effect on fMLP-stimulated DAG and inositol trisphosphate levels, nor did it amplify the response to exogenously added phorbol ester (to mimic the action of DAG) or calcium ionophore. Neutrophils primed with the cytokine showed a small, but significant, enhancement of fMLP-stimulated AA release. Compared with unprimed controls, primed neutrophils also showed a significant increase in O2- production when stimulated with either AA or the nonhydrolyzable GTP analogue, GTP-gamma-S. The magnitude of enhanced O2- production was similar to that observed after fMLP treatment of primed cells. All of these effects, including the increased sensitivity to AA treatment, were inhibited by pertussis toxin. These data show that GM-CSF primes neutrophils by modulating the activity of at least one pertussis toxin-sensitive G protein coupled to a metabolic pathway that mobilizes and utilizes arachidonic acid.  相似文献   

9.
H G Klingemann 《CMAJ》1989,140(2):137-142
The differentiation and maturation of hematopoietic progenitor cells are regulated by certain growth factors. Several of these glycoproteins have been characterized, and their amino acid sequences have been delineated. Modern DNA technology provides sufficient quantities of these hormones for testing in clinical trials. Erythropoietin (EPO) has been shown to increase the hemoglobin level and hematocrit in patients with end-stage renal disease. Granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage CSF (GM-CSF) can increase the numbers of neutrophils and monocytes, in a dose-dependent fashion. The function of granulocytes and monocytes is also enhanced. Clinical studies of the toxicity and activity of G-CSF and GM-CSF have been conducted in patients with acquired immune deficiency syndrome, aplastic anemia, myelodysplastic syndromes, and neutropenia due to cancer and chemotherapy. In almost all patients the neutrophil count increased within 24 hours after the start of treatment. Side effects of G-CSF and GM-CSF are infrequent and usually mild. Combinations of CSFs may be even more effective.  相似文献   

10.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates production of neutrophils in bone marrow and may decrease the incidence of infection during neutropenia. We evaluated the protective role of recombinant GM-CSF against Pseudomonas aeruginosa challenge in neutropenic mice. CD-1 mice treated with cyclophosphamide on days 1 and 2 of the experiment were given GM-CSF (1, 2, or 4 micrograms/day) starting at day 4 of the experiment according to the following protocol: 1) 1 microgram of GM-CSF 2 hr and 24 hr after challenge; 2) 1 microgram 24 hr before challenge, 2 hr and 24 hr after challenge; 3) 2 micrograms injected 24 hr before and 2 hr after challenge; 4) 2 micrograms given 24 hr before and 2 micrograms given 2 hr and 24 hr after challenge; 5) 4 micrograms administered 2 hr and 24 hr after challenge; and 6) saline and bovine albumin controls. The number of blood neutrophils by days 4 and 5 was similar for GM-CSF-treated and untreated animals. Survival was significantly greater in animals given 2 micrograms of GM-CSF at 24 hr before and at 2 hr and 24 hr after challenge with Pseudomonas. Neutrophils and splenic macrophages obtained from GM-CSF-treated mice (2 micrograms/animal) produced significantly greater amounts of O2- (204 +/- 36 nmoles/10(5) cells) than controls (21 +/- 10 nmoles/10(5) cells). Additionally, neutrophils and macrophages from GM-CSF-treated mice killed significantly more bacteria (P. aeruginosa) in vitro and had a greater number of C3b and Fc receptors (78 +/- 12% and 89 +/- 8%) than did cells obtained from control animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The current study was undertaken to evaluate the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) and cyclic AMP (cAMP) signaling interaction on human neutrophil apoptosis, either occurring spontaneously or induced by Fas antigen activation. Results show that GM-CSF, dibutyryl cAMP (a cAMP analog) and forskolin (an adenylate cyclase activator) are all able to suppress spontaneous neutrophil cell death. Of note however, when GM-CSF is used in combination with cAMP-elevating agents, an additive effect on neutrophil survival is observed with dibutyryl cAMP only, whereas supplementation of cell cultures with GM-CSF and forskolin results in a progressive reduction of antiapoptotic effects exerted by the single compounds. Moreover, although dibutyryl cAMP and forskolin do not affect Fas-triggered apoptotic events, they are still able to modulate the GM-CSF capacity to prolong neutrophil survival following anti-Fas IgM cell challenge, with effects similar to those respectively exerted on spontaneous neutrophil apoptosis. The data indicate that GM-CSF may negatively modulate the cAMP-mediated antiapoptotic pathway in human neutrophils, likely via the inhibition of adenylate cyclase activity. This would prevent an abnormal neutrophil survival as a result of cAMP signaling stimulation, which provides a novel insight into the role of GM-CSF as a physiological regulator of myeloid cell turnover.  相似文献   

12.
Priming of human neutrophils with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by treatment with formyl-methionyl-leucyl-phenylalanine (fMLP) stimulates cells in a physiologically relevant manner with modest 5-lipoxygenase activation and formation of leukotrienes. However, pretreatment of neutrophils with thimerosal, an organomercury thiosalicylic acid derivative, led to a dramatic increase (>50-fold) in the production of leukotriene B(4) and 5-hydroxyeicosatetraenoic acid, significantly higher than that observed after stimulation with calcium ionophore A23187. Little or no effect was observed with thimerosal alone or in combination with either GM-CSF or fMLP. Elevation of [Ca(2+)](i) induced by thimerosal in neutrophils stimulated with GM-CSF/fMLP was similar but more sustained compared with samples where thimerosal was absent. However, [Ca(2+)](i) was significantly lower compared with calcium ionophore-treated cells, suggesting that a sustained calcium rise was necessary but not sufficient to explain the effects of this compound on the GM-CSF/fMLP-stimulated neutrophil. Thimerosal was found to directly inhibit neutrophil lysophospholipid:acyl-CoA acyltransferase activity at the doses that stimulate leukotriene production, and analysis of lysates from neutrophil preparations stimulated in the presence of thimerosal showed a marked increase in free arachidonic acid, supporting the inhibition of the reincorporation of this fatty acid into the membrane phospholipids as a mechanism of action for this compound. The dramatic increase in production of leukotrienes by neutrophils when a physiological stimulus such as GM-CSF/fMLP is employed in the presence of thimerosal suggests a critical regulatory role of arachidonate reacylation that limits leukotriene biosynthesis in concert with 5-lipoxygenase and cytosolic phospholipase A(2)alpha activation.  相似文献   

13.
The cytokines tumor necrosis factor alpha (TNF alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and interleukin 1 (IL 1) all caused an upregulation of C3b receptors (CR1) on neutrophils that ranged from around 76% (G-CSF and IL 1) to 93% (TNF alpha and GM-CSF) of the upregulation obtained by pretreatment of the neutrophils with the chemotactic peptide FMLP. However, only TNF alpha and G-CSF caused a significant increase in phagocytosis of opsonized microspheres. Platelet derived growth factor, interleukin 2, and transforming growth factor beta had no effect on either of these parameters. The mediators platelet activating factor (PAF) and leukotriene B4 (LTB4) both caused a large upregulation of CR1 (93% and 80%, respectively, of the FMLP-mediated value); however, only PAF caused a significant enhancement of phagocytosis by the neutrophils. Prostaglandin E2 and thromboxane B2 had no effect on these parameters. Considerable individual variation was observed among some of the untreated and mediator-treated neutrophil preparations regarding CR1 expression and phagocytosis. The upregulation of CR1 and associated increase in phagocytic capacity of neutrophils caused by certain cytokines and other mediators may be important in host defense. Also the lack of enhancement of phagocytosis accompanying an upregulation of CR1 is unusual and may have important implications regarding the cellular mechanisms of phagocytosis by neutrophils.  相似文献   

14.
The human T cell-derived cytokines interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-5 were examined for their ability to bind specifically to human basophils and to regulate their function. Scatchard analysis of equilibrium binding studies showed that IL-3 and GM-CSF, bound to basophils with apparent dissociation constants (KD) = 8 x 10(-11) M and 3.9 x 10(-11) M, respectively. Specificity studies under conditions that prevent receptor internalization showed that the binding of IL-3, GM-CSF, and IL-5 was not inhibited by tumor necrosis factor (TNF)-alpha, IL-1 beta, interferon (IFN)-gamma, or G-CSF. However, receptors for IL-3, GM-CSF, and IL-5 interacted with each other on the basophil membrane, showing a unique spectrum of cross-reactivity, with IL-3 competing for GM-CSF and IL-5 binding, whereas GM-CSF and IL-5 showed little or no competition for IL-3 binding. In order to relate the binding properties of these cytokines to function, they were tested for their ability to influence basophil histamine release in an IgE/anti-IgE-dependent system. We found a hierarchy in the stimulation of basophil with the order of potency being IL-3 greater than GM-CSF greater than IL-5. In addition, IL-3 stimulated larger amounts of histamine release than GM-CSF or IL-5. The observation that IL-3 interacts with receptors for GM-CSF and IL-5 may have a bearing on its stronger functional effects and suggests a major role for IL-3 in the pathogenesis of hypersensitivity syndromes.  相似文献   

15.
G-CSF is a hemopoietic growth factor involved in granulocytic differentiation of progenitor cells. In this study, we investigated the effects of PGE2 on G-CSF production in murine peritoneal neutrophils in vitro and in vivo. PGE2 augmented LPS-primed G-CSF release from peritoneal neutrophils. This augmentation was mimicked by a type E prostanoid receptor (EP)2-selective agonist but not by other EP-specific agonists. Indeed, the effect of PGE2 on G-CSF release was abolished in neutrophils isolated from EP2-deficient mice. PGE2 and an EP2 agonist have the ability to stimulate G-CSF gene expression even in the absence of LPS. In the casein-induced peritonitis model, the appearance of G-CSF in the casein-injected peritoneal cavity associated well with the timing of neutrophil infiltration as well as PGE2 levels in exudates, with a peak value at 6 h postinjection. Inhibition of endogenous PG synthesis by indomethacin resulted in a marked decrease in G-CSF content and neutrophil number in the peritoneal cavity. Moreover, EP2-deficient mice exhibited a strikingly reduced G-CSF content in peritoneal exudates with comparable responses in neutrophil migration and local PGE2 production at 6 h postinjection. These results suggest that the PGE2-EP2 system contributes to the local production of G-CSF during acute inflammation.  相似文献   

16.
The hemopoietic growth factor granulocyte-macrophage colony-stimulating factor, GM-CSF, specifically controls the production of granulocytes and macrophages. This report describes the binding of biologically-active 125I-labeled murine GM-CSF to a range of hemopoietic cells. Specific binding was restricted to murine cells and neither rat nor human bone marrow cells appeared to have surface receptors for 125I-labeled GM-CSF. 125I-Labeled GM-CSF only appeared to bind specifically to cells in the myelomonocytic lineage. The binding of 125I-labeled GM-CSF to both bone marrow cells and WEHI-3B(D+) was rapid (50% maximum binding was attained within 5 min at both 20 degrees C and 37 degrees C). Unlabeled GM-CSF was the only polypeptide hormone which completely inhibited the binding of 125I-labeled GM-CSF to bone marrow cells, however, multi-CSF (also called IL-3) and G-CSF partially reduced the binding of 125I-labeled GM-CSF to bone marrow cells. Interestingly, the binding of 125I-labeled GM-CSF to a myelomonocytic cell line, WEHI-3B(D+), was inhibited by unlabeled GM-CSF but not by multi-CSF or G-CSF. Scatchard analysis of the binding of 125I-labeled GM-CSF to WEHI-3B(D+) cells, bone marrow cells and peritoneal neutrophils indicated that there were two classes of binding sites: one of high affinity (Kd1 = 20 pM) and one of low affinity (Kd2 = 0.8-1.2 nM). Multi-CSF only inhibited the binding of 125I-labeled GM-CSF to the high affinity receptor on bone marrow cells: this inhibition appeared to be a result of down regulation or modification of the GM-CSF receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Human recombinant granulocyte-macrophage CSF (GM-CSF) "primes" neutrophils for enhanced biologic responses to a number of secondary stimuli. Here, we examined the properties of neutrophil priming by GM-CSF and other growth factors such as human rTNF and granulocyte CSF. Although GM-CSF has a negligible direct effect on [3H]arachidonic acid release, it enhances or "primes" neutrophils for three- to fivefold increased release of [3H]arachidonic acid, induced by 1.0 microM A23187 and the chemotactants FMLP, platelet-activating factor, and leukotriene B4 (LTB4) (all 0.1 microM). The priming effects of GM-CSF were concentration- and time-dependent (maximum 100 pM, 1 h at 23 degrees C), and consistent with the determined dissociation constant of the human GM-CSF receptor. Indomethacin (10(-8) M), cycloheximide (100 micrograms/ml), and pertussis toxin (200 ng/ml, 2 h at 37 degrees C) had no effect on GM-CSF-, A23187, or platelet-activating factor-induced [3H]arachidonic acid release. The lipoxygenase inhibitor, nordihydroguaiaretic acid, however, totally abolished A23187-induced [3H]arachidonic acid release from both diluent- and GM-CSF-treated neutrophils. Consistent with this observation, we found that GM-CSF-pretreated neutrophils synthesize increased levels of LTB4 after stimulation with A23187 and chemotactic factors. GM-CSF enhances neutrophil arachidonic acid release and LTB4 synthesis, and thereby may amplify the inflammatory response to chemotactic factors and other physiologically relevant stimuli.  相似文献   

18.
Interleukin 1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) are molecularly distinct cytokines acting on separate receptors. The release of these cytokines can be concomitantly induced by the same signal and from the same cellular source, suggesting that they may cooperate. Administered alone, human recombinant (hr)IL-1 alpha and hrTNF alpha protect lethally irradiated mice from death, whereas murine recombinant GM-CSF and hrG-CSF do not confer similar protection. On a dose basis, IL-1 alpha is a more efficient radioprotector than TNF alpha. At optimal doses, IL-1 alpha is a more radioprotective cytokine than TNF alpha in C57BL/6 and B6D2F1 mice and less effective than TNF alpha in C3H/HeN mice, suggesting that the relative effectiveness of TNF alpha and IL-1 alpha depends on the genetic makeup of the host. Administration of the two cytokines in combination results in additive radioprotection in all three strains. This suggests that the two cytokines act through different radioprotective pathways and argues against their apparent redundancy. Suboptimal, nonradioprotective doses of IL-1 alpha also synergize with GM-CSF or G-CSF to confer optimal radioprotection, suggesting that such an interaction may be necessary for radioprotection of hemopoietic progenitor cells.  相似文献   

19.
The effects of recombinant human tumor necrosis factor (TNF), lymphotoxin (LT), and interferon-gamma (IFN-gamma) on the growth of human hemopoietic progenitor cells in clonal culture have been examined. Colony growth was induced by using granulocyte colony-stimulating factor (G-CSF), or granulocyte-macrophage colony-stimulating factor (GM-CSF). A suppressive effect of TNF, LT, and IFN-gamma on the development of granulocyte, macrophage, and mixed granulocyte/macrophage colonies was shown. Suppression of colonies formed after stimulation with G-CSF was greater than that observed after stimulation with GM-CSF. In the presence of a monoclonal antibody to TNF, or polyclonal antibodies to either LT or IFN-gamma, the inhibitory effect of the molecule to which the antibody was directed was abrogated. These findings suggest that progenitor cells responsive to G-CSF or GM-CSF have different sensitivities to the effects of TNF, LT, and IFN-gamma. Defining the interactions of growth factors and inhibitors should increase understanding of mechanisms underlying diseases associated with suppression of normal hemopoiesis, and in predicting the effects in vivo of these bioregulatory molecules in clinical medicine.  相似文献   

20.
Physiopathological discrepancies exist between the most widely used models of pulmonary hypertension (PH), namely monocrotaline- and hypoxia-induced PH. The development of a new model could help in the understanding of underlying mechanisms. Repeated alpha-naphthylthiourea (ANTU) injections (5 mg/kg weekly, 3 wk) induced pulmonary vascular remodeling, which was associated with development of PH and right ventricular hypertrophy. ANTU followed by granulocyte colony-stimulating factor (G-CSF; 25 microgram. kg(-1). day(-1) subcutaneously, 3 days/wk) induced higher pulmonary arterial pressures and right ventricular hypertrophy than ANTU alone. Lidocaine, which inhibits neutrophil functions, inhibited PH exacerbation by G-CSF. Endothelial nitric oxide synthase expression, measured to assess ANTU-related endothelial toxicity, decreased significantly in ANTU-treated rats and fell even more sharply when G-CSF was given. This occurred despite a significant increase in vascular endothelial cell growth factor expression in lung and right ventricle in rats given ANTU alone and even more in rats given ANTU plus G-CSF. Repeated ANTU administration induces PH with vascular remodeling that can be further aggravated by the neutrophil activator G-CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号