首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
Phosphoenolpyruvate carboxykinase of chicken liver cytosol was purified to homogeneity by procedures including affinity chromatography with GTP as a ligand. The purified enzyme showed a molecular weight of 68,000 on gel electrophoresis in the presence of dodecyl sulfate. Comparative studies on this enzyme and its isozyme purified from chicken liver mitochondria were performed. As regards amino acid composition, the cytosolic enzyme was quite different from the mitochondrial enzyme, but was rather similar to rat liver cytosolic phosphoenolpyruvate carboxykinase. Specific activities of the cytosolic enzyme were 30-100% higher than those of the mitochondrial enzyme for oxaloacetate-CO2 exchange, oxaloacetate decarboxylation, and phosphoenolpyruvate carboxylation reactions, though the relative rates of the activities were similar, decreasing in the order given. Apparent Michaelis constants for oxaloacetate in the oxaloacetate decarboxylation reaction were 11.6 and 17.9 microM for the cytosolic and the mitochondrial enzyme, respectively, but the values for GTP, GDP, phosphoenolpyruvate, and CO2 in the oxaloacetate decarboxylation and phosphoenolpyruvate carboxylation reactions were 1.3-2.2 times higher for the cytosolic enzyme than for the mitochondrial enzyme. Thus, the fundamental catalytic properties of the chicken liver phosphoenolpyruvate carboxykinase isozymes were rather similar, despite the marked difference in amino acid compositions.  相似文献   

2.
S K Ng  M Wong    I R Hamilton 《Journal of bacteriology》1982,150(3):1252-1258
Oxaloacetate decarboxylase was purified to 136-fold from the oral anaerobe Veillonella parvula. The purified enzyme was substantially free of contaminating enzymes or proteins. Maximum activity of the enzyme was exhibited at pH 7.0 for both carboxylation and decarboxylation. At this pH, the Km values for oxaloacetate and Mg2+ were at 0.06 and 0.17 mM, respectively, whereas the Km values for pyruvate, CO2, and Mg2+ were 3.3, 1.74, and 1.85 mM, respectively. Hyperbolic kinetics were observed with all of the aforementioned compounds. The Keq' was 2.13 X 10(-3) mM-1 favoring the decarboxylation of oxaloacetate. In the carboxylation step, avidin, acetyl coenzyme A, biotin, and coenzyme A were not required. ADP and NADH had no effect on either the carboxylation or decarboxylation step, but ATP inhibited the carboxylation step competitively and the decarboxylation step noncompetitively. These types of inhibition fitted well with the overall lactate metabolism of the non-carbohydrate-fermenting anaerobe.  相似文献   

3.
The phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) of the epimastigote form of Trypanosoma (Schizotrypanum) cruzi has been purified to homogeneity. The enzyme is composed of two apparently identical 42,000 +/- 500 subunits, is highly specific for adenine nucleotides, and has a strict requirement of Mn2+ ions for activity; the activation of the enzyme by ionic Mn2+ reveals that one Mn2+ ion required for each 42,000 subunit. Hyperbolic kinetics are observed for all substrates in the carboxylation reaction with Km (phosphoenolpyruvate) of 0.36 +/- 0.08 mM, Km (HCO-3) of 3.7 +/- 0.2 mM, and Km (Mg-ADP) of 39 +/- 1 microM. In the decarboxylation reaction the kinetics with respect to oxalacetic acid are also hyperbolic with a Km of 27 +/- 3 microM, but towards Mg-ATP there is a biphasic response: hyperbolic at low (less than 250 microM) concentrations with a Km of 39 +/- 1 microM, but at higher concentrations the nucleotide produces a strong inhibition of the enzyme activity. This inhibition is also observed with Mg-GTP and Mg-ITP which are not substrates of the reaction. The results are consistent with an important regulatory function of the enzyme in the amino-acid catabolism of T. cruzi.  相似文献   

4.
Ray TB  Black CC 《Plant physiology》1976,58(5):603-607
Phosphoenolpyruvate carboxykinase, EC 4.1.1.32 (PEPCK), was purified 43-fold from the grass Panicum maximum. Michaelis constants (Km) were determined for the exchange reaction, the carboxylation reaction, and the decarboxylation reaction. The Km values for oxaloacetate and ATP in the decarboxylation reaction were found to be lower than the Km values for the substrates used in the exchange reaction and in the carboxylation reaction. Phosphoenolpyruvate carboxylase was not detectable in the purified PEPCK preparation.  相似文献   

5.
Phosphoenolpyruvate carboxykinase has been partially purified from pineapple (Ananas comosus [L.]) leaves. Specific activities obtained show it to be a major activity in this tissue. Above 15 C, the respective activation energies for decarboxylation and carboxylation are 13 and 12 kcal/mol. Below 15 C, there are discontinuities in Arrhenius plots with an associated large increase in activation energy. The adenine nucleotides are preferred to other nucleotides as substrates. The apparent Km values in the carboxylation direction are: ADP 0.13 mm, HCO(3) (-) 3.4 mm, and phosphoenolpyruvate 5 mm. In the decarboxylation direction, the apparent Km values are: ATP 0.02 mm, ADP 0.05 mm, and oxaloacetate 0.4 mm. The decarboxylation activity had an almost equal velocity with either ADP or ATP. The pH optima are between 6.8 and 7. Inhibition of the carboxylation reaction by ATP, pyruvate, and carbonic anhydrase was demonstrated. Decarboxylase specific activities are over twice carboxylation activities. The data support a model in which phosphoenolpyruvate carboxykinase is of physiological significance only during the light period and then only as a decarboxylase.  相似文献   

6.
Phosphoenolpyruvate carboxykinase from bullfrog liver mitochondria has been purified to electrophoretical and immunological homogeneity by an improved method using hydrophobic chromatography on Sepharose-hexane-GMP and affinity chromatography on phosphocellulose. The molecular weight was determined to be 70,000 by SDS-gel electrophoresis, 65,000 by Sephadex G-100 gel filtration and 72,000 by glycerol gradient centrifugation. The isoelectric point was determined to be 6.2, differing from that of the cytosol enzyme. The rabbit IgG fraction against the mitochondrial PEP carboxykinase precipitated not only the mitochondrial but also the cytosol enzyme. The dissociation constant of the nucleotide-enzyme complex was determined to be 3 microM for GTP, 8.5 microM for GDP, and 171 microM for GMP. The affinity of GTP for the enzyme was reduced in the presence of phosphoenolpyruvate or Mn2+, whereas that of GDP was not changed. GMP inhibited the enzyme competitively with GDP for the phosphoenolpyruvate carboxylation and competitively with GTP for the exchange reaction between [14C]HCO3- and oxaloacetate. The purified enzyme was found to have a cysteine residue which reacted with iodoacetamide to form inactive enzyme. Guanine nucleotides or IDP and Mn2+ at a lower concentration prevented the inactivation by iodoacetamide of the enzyme in a competitive manner. Binding of guanine nucleotide to the enzyme and the relation of the sulfhydryl group to the nucleotide binding are discussed.  相似文献   

7.
Oxaloacetate decarboxylase (OXAD), the enzyme that catalyzes the decarboxylation of oxaloacetate to pyruvic acid and carbon dioxide, was purified 245-fold to homogeneity from Pseudomonas stutzeri. The three-step purification procedure comprised anion-exchange chromatography, metal-chelate affinity chromatography, and biomimetic-dye affinity chromatography. Estimates of molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and native high-performance gel-filtration liquid chromatography were, respectively, 63 and 64 kDa, suggesting a monomeric protein. OXAD required for maximum activity divalent metal cations such as Mn2+ and Mg2+ but not monovalent cations. The enzyme is not inhibited by avidin, but is competitively inhibited by adenosine 5'-diphosphate, acetic acid, phosphoenolpyruvate, malic acid, and oxalic acid. Initial velocity, product inhibition, and dead-end inhibition studies suggested a rapid-equilibrium ordered kinetic mechanism with Mn2+ being added to the enzyme first followed by oxaloacetate, and carbon dioxide is released first followed by pyruvate. Inhibition data as well as pH-dependence profiles and kinetic parameters are reported and discussed in terms of the mechanism operating for oxaloacetate decarboxylation.  相似文献   

8.
The biotin-containing oxaloacetate decarboxylase from Klebsiella aerogenes catalyzed the Na+-dependent decarboxylation of oxaloacetate to pyruvate and bicarbonate (or CO2) but not the reversal of this reaction, not even in the presence of an oxaloacetate trapping system. The enzyme catalyzed an avidin-sensitive isotopic exchange between [1-14C]pyruvate and oxaloacetate, which indicated the intermediate formation of a carboxybiotin enzyme. Sodium ions were not required for this partial reaction, but promoted the second partial reaction, the decarboxylation of the carboxybiotin enzyme, thus accounting for the Na+ requirement of the overall reaction. Therefore, the 14CO2-enzyme which was formed upon incubation of the decarboxylase with [4-15C]oxaloacetate, could only be isolated if Na+ ions were excluded. Preincubation of the decarboxylase with avidin also prevented its labelling with 14CO2. The isolated 14CO2-labelled oxaloacetate decarboxylase revealed the following properties. It was slowly decarboxylated at neutral pH and rapidly upon acidification. The 14CO2 residues of the 14CO2-enzyme could be transferred to pyruvate yielding [4-14C]oxaloacetate. In the presence of Na+ this 14CO2 transfer was repressed by the simultaneous decarboxylation of the 14CO2-enzyme. However, Na+ alone was insufficient as a cofactor for the decarboxylation of the isolated 14CO2-enzyme, since this required pyruvate in addition to Na+. It is therefore concluded that the decarboxylation of oxaloacetate proceeds over a CO2-enzyme--pyruvate complex and that free CO2-enzyme is an abortive reaction intermediate. The activation energy of the enzymic decarboxylation of oxaloacetate changed with temperature and was about 113 kJ below 11 degrees C, 60 kJ between 11 degrees C and 31 degrees C and 36 kJ between 31--45 degrees C.  相似文献   

9.
The mitochondrial phosphoenolpyruvate carboxykinase (GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32), purified from chick embryo liver, was synergistically activated by a combination of Mn2+ and Mg2+ in the oxaloacetate ---- H14CO-3 exchange reaction. Increases in the Mg2+ concentration caused decreases in the K0.5 value of Mn2+ in line with the earlier finding that the enzyme was markedly activated by low Mn2+ (microM) plus high Mg2+ (mM). In the presence of 2.5 mM Mg2+, increases in the Mn2+ level first enhanced the activity of phosphoenolpyruvate carboxykinase, and then suppressed it to the maximal velocity shown in the presence of Mn2+ alone. Kinetic studies showed that high Mn2+ inhibited the activity of Mg2+ noncompetitively, and those of GTP and oxaloacetate uncompetitively. The inhibition constant for oxaloacetate (K'i = 550 microM) was lower than that of Mg2+ (Ki = K'i = 860 microM) or GTP (K'i = 1.6 mM), and was nearly equal to the apparent half-maximal inhibition concentration of Mn2+. These results suggested that Mn2+ can play two roles, of activating and suppressing phosphoenolpyruvate carboxykinase activity in the presence of high Mg2+.  相似文献   

10.
1. The aim of this work was to investigate the role of phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating) EC 4.1.1.49) in the conversion of fat to sugar by the cotyledons of seedlings of Cucurbita pepo. 2. The enzyme was partially purified from the cotyledons of 5-day-old seedlings. The Michaelis constants for oxaloacetate and ATP were 56 and 119 micron, respectively. The decarboxylation reaction was optimum at pH 7.4. A range of intermediary metabolites did not affect the activity of the enzyme, but 3-mercaptopicolinic acid at micron concentrations was an effective inhibitor. 3. Centrifugation of extracts of 5-day-old cotyledons sedimented appreciable proportions of the ribuloseibisphosphate carboxylase, isocitrate lyase and fumarate hydratase present but very little of the phosphoenolpyruvate carboxykinase. 4. Measurements of phosphoenolpyruvate carboxykinase of cotyledons during germination showed that the maximum catalytic activity exceeded, and changed coincidently with, the rate of gluconeogenesis. 5. 3-Mercaptopicolinic acid inhibited gluconeogenesis from [1-14C]- and [2-14C]acetate supplied to excised cotyledons. The detailed distribution of 14C indicated inhibition of the conversion of oxaloacetate to phosphoenolpyruvate. 6. It is concluded that in marrow cotyledons phosphoenolpyruvate carboxykinase is in the soluble phase of the cytoplasm and catalyses a component reaction of gluconeogenesis.  相似文献   

11.
PEP Carboxykinase Exchange Reaction in Photosynthetic Bacteria   总被引:1,自引:1,他引:0  
This paper describes some new characteristics of the phosphoenolpyruvate carboxykinase CO(2)-oxaloacetate exchange reaction in purified preparations of Rhodospirillum rubrum. The enzymatic activity has been purified 169-fold. Nucleotide diphosphates substitute for nucleotide triphosphates in the exchange reaction. Nucleotide diphosphates will not support the synthesis of phosphoenolpyruvate from oxaloacetate. This reaction differs significantly from the CO(2)-oxaloacetate exchange reaction in higher plants and animals.  相似文献   

12.
The functional significance of tyrosine 207 of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase was explored by examining the kinetic properties of the Tyr207Leu mutant. The variant enzyme retained the structural characteristics of the wild-type protein as indicated by circular dichroism, intrinsic fluorescence spectroscopy, and gel-exclusion chromatography. Kinetic analyses of the mutated variant showed a 15-fold increase in K(m)CO?, a 32-fold decrease in V(max), and a 6-fold decrease in K(m) for phosphoenolpyruvate. These results suggest that the hydroxyl group of Tyr 207 may polarize CO? and oxaloacetate, thus facilitating the carboxylation/decarboxylation steps.  相似文献   

13.
S L Ausenhus  M H O'Leary 《Biochemistry》1992,31(28):6427-6431
In addition to the normal carboxylation reaction, phosphoenolpyruvate carboxylase from Zea mays catalyzes a HCO3(-)-dependent hydrolysis of phosphoenolpyruvate to pyruvate and Pi. Two independent methods were used to establish this reaction. First, the formation of pyruvate was coupled to lactate dehydrogenase in assay solutions containing high concentrations of L-glutamate and aspartate aminotransferase. Under these conditions, oxalacetic acid produced in the carboxylation reaction was efficiently transaminated, and decarboxylation to form spurious pyruvate was negligible. Second, sequential reduction of oxalacetate and pyruvate was achieved by initially running the reaction in the presence of malate dehydrogenase with NADH in excess over phosphoenolpyruvate. After the reaction was complete, lactate dehydrogenase was added, thus giving a measure of pyruvate concentration. At pH 8.0 in the presence of Mg2+, the rate of phosphoenolpyruvate hydrolysis was 3-7% of the total reaction rate. The hydrolysis reaction catalyzed by phosphoenolpyruvate carboxylase was strongly metal dependent, with rates decreasing in the order Ni2+ greater than Co2+ greater than Mn2+ greater than Mg2+ greater than Ca2+. These results suggest that the active site metal ion binds to the enolate oxygen, thus stabilizing the proposed enolate intermediate. The more stable the enolate, the less reactive it is toward carboxylation and the greater the opportunity for hydrolysis.  相似文献   

14.
Phosphoenolpyruvate carboxykinase from chicken liver mitochondria and rat liver cytosol catalyzes the phosphorylation of alpha-substituted carboxylic acids such as glycolate, thioglycolate, and DL-beta-chlorolactate in reactions with absolute requirements for divalent cation activators. 31P NMR analysis of the reaction products indicates that phosphorylation occurs at the alpha-position to generate the corresponding O- or S-bridged phosphate monoesters. In addition, the enzymes catalyze the bicarbonate-dependent phosphorylation of hydroxylamine. The chicken liver enzyme also catalyze the bicarbonate-dependent phosphorylation of hydroxylamine. The chicken liver enzyme also catalyzes the bicarbonate-dependent phosphorylation of fluoride ion. The kappa cat values for these substrates are 20-1000-fold slower than the kappa cat for oxaloacetate. Pyruvate and beta-hydroxypyruvate are not phosphorylated, since the enzyme does not catalyze the enolization of these compounds. Oxalate, a structural analogue of the enolate of pyruvate, is a competitive inhibitor of phosphoenolpyruvate carboxykinase (Ki of 5 microM) in the direction of phosphoenolpyruvate formation. Oxalate is also an inhibitor of the chicken liver enzyme in the direction of oxaloacetate formation and in the decarboxylation of oxaloacetate. The chicken liver enzyme is inhibited by beta-sulfopyruvate, an isoelectronic analogue of oxaloacetate. The extensive homologies between the reactions catalyzed by phosphoenolpyruvate carboxykinase and pyruvate kinase suggest that the divalent cation activators in these reactions may have similar functions. The substrate specificity indicates that phosphoenolpyruvate carboxykinase decarboxylates oxaloacetate to form the enolate of pyruvate which is then phosphorylated by MgGTP on the enzyme.  相似文献   

15.
16.
Malic enzyme (S)-malate: NADP+ oxidoreductase (oxaloacetate-decarboxylating, EC 1.1.1.40) purified from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4, catalyzed the metal-dependent decarboxylation of oxaloacetate at optimum pH 7.6 at a rate comparable to the decarboxylation of L-malate. The oxaloacetate decarboxylase activity was stimulated about 50% by NADP but only in the presence of MgCl2, and was strongly inhibited by L-malate and NADPH which abolished the NADP activation. In the presence of MnCl2 and in the absence of NADP, the Michaelis constant and Vm for oxaloacetate were 1.7 mM and 2.3 mumol.min-1.mg-1, respectively. When MgCl2 replaced MnCl2, the kinetic parameters for oxaloacetate remained substantially unvaried, whereas the Km and Vm values for L-malate have been found to vary depending on the metal ion. The enzyme carried out the reverse reaction (malate synthesis) at about 70% of the forward reaction, at pH 7.2 and in the presence of relatively high concentrations of bicarbonate and pyruvate. Sulfhydryl residues (three cysteine residues per subunit) have been shown to be essential for the enzymatic activity of the Sulfolobus solfataricus malic enzyme. 5,5'-Dithiobis(2-nitrobenzoic acid), p-hydroxymercuribenzoate and N-ethylmaleimide caused the inactivation of the oxidative decarboxylase activity, but at different rates. The inactivation of the overall activity by p-hydroxymercuribenzoate was partially prevented by NADP singly or in combination with both L-malate and MnCl2, and strongly enhanced by the carboxylic acid substrates; NADP + malate + MnCl2 afforded total protection. The inactivation of the oxaloacetate decarboxylase activity by p-hydroxymercuribenzoate treatment was found to occur at a slower rate than that of the oxidative decarboxylase activity.  相似文献   

17.
Clark DD  Allen JR  Ensign SA 《Biochemistry》2000,39(6):1294-1304
The bacterial metabolism of propylene proceeds by epoxidation to epoxypropane followed by carboxylation to acetoacetate. Epoxypropane carboxylation is a minimetabolic pathway that requires four enzymes, NADPH, NAD(+), and coenzyme M (CoM; 2-mercaptoethanesulfonate) and occurs with the overall reaction stoichiometry: epoxypropane + CO(2) + NADPH + NAD(+) + CoM --> acetoacetate + H(+) + NADP(+) + NADH + CoM. The terminal enzyme of the pathway is NADPH:2-ketopropyl-CoM [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase (2-KPCC), an FAD-containing enzyme that is a member of the NADPH:disulfide oxidoreductase family of enzymes and that catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-CoM to form acetoacetate and CoM according to the reaction: 2-ketopropyl-CoM + NADPH + CO(2) --> acetoacetate + NADP(+) + CoM. In the present work, 2-KPCC has been characterized with respect to the above reaction and four newly discovered partial reactions of relevance to the catalytic mechanism, and each of which requires the formation of a stabilized enolacetone intermediate. These four reactions are (1) NADPH-dependent cleavage and protonation of 2-ketopropyl-CoM to form NADP(+), CoM, and acetone, a reaction analogous to the physiological reaction but in which H(+) is the electrophile; (2) NADP(+)-dependent synthesis of 2-ketopropyl-CoM from CoM and acetoacetate, the reverse of the physiologically important forward reaction; (3) acetoacetate decarboxylation to form acetone and CO(2); and (4) acetoacetate/(14)CO(2) exchange to form (14)C(1)-acetoacetate and CO(2). Acetoacetate decarboxylation and (14)CO(2) exchange occurred independent of NADP(H) and CoM, demonstrating that these substrates are not central to the mechanism of enolate generation and stabilization. 2-KPCC did not uncouple NADPH oxidation or NADP(+) reduction from the reactions involving cleavage or formation of 2-ketopropyl-CoM. N-Ethylmaleimide inactivated the reactions forming/using 2-ketopropyl-CoM but did not inactivate acetoacetate decarboxylation or (14)CO(2) exchange reactions. The biochemical characterization of 2-KPCC and the associated five catalytic activities has allowed the formulation of an unprecedented mechanism of substrate activation and carboxylation that involves NADPH oxidation, a redox active disulfide, thiol-mediated reductive cleavage of a C-S thioether bond, the formation of a CoM:cysteine mixed disulfide, and enolacetone stabilization.  相似文献   

18.
An assat for PEP carboxykinase in crude tissue extracts   总被引:8,自引:0,他引:8  
A simple procedure is described for assaying phosphoenolpyruvate carboxykinase in the direction of oxaloacetate decarboxylation by following the decrease in oxaloacetate absorbance. The procedure offers a means of measuring the activity of this enzyme in its physiological direction in unfractionated tissue extracts.  相似文献   

19.
The mitochondrial NADP-dependent malic enzyme (EC 1.1.1.40) was purified about 300-fold from cod Gadus morhua heart to a specific activity of 48 units (mumol/min)/mg at 30 degrees C. The possibility of the reductive carboxylation of pyruvate to malate was studied by determination of the respective enzyme properties. The reverse reaction was found to proceed at about five times the velocity of the forward rate at a pH 6.5. The Km values determined at pH 7.0 for pyruvate, NADPH and bicarbonate in the carboxylation reaction were 4.1 mM, 15 microM and 13.5 mM, respectively. The Km values for malate, NADP and Mn2+ in the decarboxylation reaction were 0.1 mM, 25 microM and 5 microM, respectively. The enzyme showed substrate inhibition at high malate concentrations for the oxidative decarboxylation reaction at pH 7.0. Malate inhibition suggests a possible modulation of cod heart mitochondrial NADP-malic enzyme by its own substrate. High NADP-dependent malic enzyme activity found in mitochondria from cod heart supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate.  相似文献   

20.
In human liver, almost 90% of malic enzyme activity is located within the extramitochondrial compartment, and only approximately 10% in the mitochondrial fraction. Extramitochondrial malic enzyme has been isolated from the post-mitochondrial supernatant of human liver by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose, ADP-Sepharose-4B and Sephacryl S-300 to apparent homogeneity, as judged from polyacrylamide gel electrophoresis. The specific activity of the purified enzyme was 56 mumol.min-1.mg protein-1, which corresponds to about 10,000-fold purification. The molecular mass of the native enzyme determined by gel filtration is 251 kDa. SDS/polyacrylamide gel electrophoresis showed one polypeptide band of molecular mass 63 kDa. Thus, it appears that the native protein is a tetramer composed of identical-molecular-mass subunits. The isoelectric point of the isolated enzyme was 5.65. The enzyme was shown to carboxylate pyruvate with at least the same rate as the forward reaction. The optimum pH for the carboxylation reaction was at pH 7.25 and that for the NADP-linked decarboxylation reaction varied with malate concentration. The Km values determined at pH 7.2 for malate and NADP were 120 microM and 9.2 microM, respectively. The Km values for pyruvate, NADPH and bicarbonate were 5.9 mM, 5.3 microM and 27.9 mM, respectively. The enzyme converted malate to pyruvate (at optimum pH 6.4) in the presence of 10 mM NAD at approximately 40% of the maximum rate with NADP. The Km values for malate and NAD were 0.96 mM and 4.6 mM, respectively. NAD-dependent decarboxylation reaction was not reversible. The purified human liver malic enzyme catalyzed decarboxylation of oxaloacetate and NADPH-linked reduction of pyruvate at about 1.3% and 5.4% of the maximum rate of NADP-linked oxidative decarboxylation of malate, respectively. The results indicate that malic enzyme from human liver exhibits similar properties to the enzyme from animal liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号