首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
TNF-related apoptosis-inducing ligand (TRAIL) is a potential chemotherapeutic agent with high selectivity for malignant cells. Many tumors, however, are resistant to TRAIL cytotoxicity. Although cellular inhibitors of apoptosis 1 and 2 (cIAP-1 and -2) are often over-expressed in cancers, their role in mediating TRAIL resistance remains unclear. Here, we demonstrate that TRAIL-induced apoptosis of liver cancer cells is associated with degradation of cIAP-1 and X-linked IAP (XIAP), whereas cIAP-2 remains unchanged. Lower concentrations of TRAIL causing minimal or no apoptosis do not alter cIAP-1 or XIAP protein levels. Silencing of cIAP-1 expression, but not XIAP or cIAP-2, as well as co-treatment with a second mitochondrial activator of caspases (SMAC) mimetic (which results in rapid depletion of cIAP-1), sensitizes the cells to TRAIL. TRAIL-induced loss of cIAP-1 and XIAP requires caspase activity. In particular, caspase 8 knockdown stabilizes both cIAP-1 and XIAP, while caspase 9 knockdown prevents XIAP, but not cIAP-1 degradation. Cell-free experiments confirmed cIAP-1 is a substrate for caspase 8, with likely multiple cleavage sites. These results suggest that TRAIL-mediated apoptosis proceeds through caspase 8-dependent degradation of cIAP-1. Targeted depletion of cIAP-1 by SMAC mimetics in conjunction with TRAIL may be beneficial for the treatment of human hepatobiliary malignancies.  相似文献   

2.
ARTS (Sept4_i2), is a pro-apoptotic protein localized at the mitochondria of living cells. In response to apoptotic signals, ARTS rapidly translocates to the cytosol where it binds and antagonizes XIAP to promote caspase activation. However, the mechanism of interaction between these two proteins and how it is regulated remained to be explored. In this study, we show that ARTS and XIAP bind directly to each other, as recombinant ARTS and XIAP proteins co-immunoprecipitate together. We also show that over expression of ARTS alone is sufficient to induce a strong down-regulation of XIAP protein levels and that this reduction occurs through the ubiquitin proteasome system (UPS). Using various deletion and mutation constructs of XIAP we show that ARTS specifically binds to the BIR3 domain in XIAP. Moreover, we found that ARTS binds to different sequences in BIR3 than other IAP antagonists such as SMAC/Diablo. Computational analysis comparing the location of the putative ARTS interface in BIR3 with the known interfaces of SMAC/Diablo and caspase 9 support our results indicating that ARTS interacts with residues in BIR3 that are different from those involved in binding SMAC/Diablo and caspase 9. We therefore suggest that ARTS binds and antagonizes XIAP in a way which is distinct from other IAP-antagonists to promote apoptosis.  相似文献   

3.
4.
5.
Interferon-gamma (IFN-gamma), as one of interferon family that regulates antiviral, antiproliferative, and immunomodulatory responses, has been implicated for the growth regulation of ovarian cancer cells. However, the molecular mechanisms are not yet fully defined. To analyze detailed mechanisms, the ovarian cancer cell lines (2774, PA-1, OVCAR-3, and SKOV-3) were treated with IFN-gamma. The growth of 2774 was most effectively suppressed than that of other cells in both time-course and dose-dependent experiments. The order of sensitivity in other cells was PA-1 > OVCAR-3 > SKOV-3 (not responded at all). The DNA fragmentation and DAPI staining assays suggested that the IFN-gamma-mediated cytotoxicity could be triggered by apoptosis. The treatment induced IFN regulatory factor-1 (IRF-1) in two IFN-gamma-sensitive cells (2774, PA-1), whereas IRF-1 was not induced in two IFN-gamma-resistant cells (OVCAR-3, SKOV-3). The levels of p53 and p21WAF1 were not strikingly changed in all four cells. Interestingly, the expression of interleukin-converting enzyme (ICE, or caspase-1) was increased by the treatment in a kinetically consistent manner to the induction of IRF-1. However, CD95 (Fas/APO-1) was not changed. Apoptosis was greatly induced, when IRF-1 was transiently expressed in PA-1 without the treatment of IFN-gamma. However, it was repressed when IRF-1 together with IRF-2, an antagonist of IRF-1, were coexpressed. In addition, the effect of IFN-gamma was reduced in the 2774 and PA-1 cells stably expressing either IRF-1 antisense or IRF-2 sense, as shown by the cytotoxicity and FACS analysis. Furthermore, the IFN-gamma-induced apoptosis was greatly reduced, when inhibitors of ICE were treated into PA-1 cells. Taken together, these results suggest that IRF-1 directly mediates the IFN-gamma-induced apoptosis via the activation of caspase-1 gene expression in IFN-gamma-sensitive ovarian cancer cells.  相似文献   

6.
Chemoresistance of ovarian cancer has been previously attributed to the expression and activation of Bcl-2 family proteins. BH3-mimetic molecules possessing potential anticancer activity are able to inhibit antiapoptotic Bcl-2 family proteins. AT101 (R-(-)-gossypol), a natural BH3-mimetic molecule, has shown anti-tumor activity as a single agent and in combination with standard anticancer therapies in a variety of tumor models. Here, we report the effect of AT101 on apoptosis in cisplatin-resistant ovarian cancer cells and identify the major molecular events that determine sensitivity. AT101 induced cell apoptosis by activating Bax through a conformational change, translocation, and oligomerization. The inhibition of Bax expression only partially prevented caspase-3 cleavage. However, the gene silencing of Bax had no effect on mitochondrial Smac release. Further experiments demonstrated that Smac reduction inhibited caspase-3 activation and attenuated cell apoptosis. More importantly, the inhibition of Smac or overexpression of XIAP attenuated Bax activation in ovarian cells. Furthermore, our data indicate that the Akt-p53 pathway is involved in the regulation of Smac release. Taken together, our data demonstrate the role of Smac and the molecular mechanisms of AT101-induced apoptosis of chemoresistant ovarian cancer cells. Our findings suggest that AT101 not only triggers Bax activation but also induces mitochondrial Smac release. Activated Smac can enhance Bax-mediated cellular apoptosis. Therefore, Smac mediates Bax activation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells.  相似文献   

7.
Wang Y  Mao H  Hao Q  Wang Y  Yang Y  Shen L  Huang S  Liu P 《Regulatory peptides》2012,178(1-3):36-42
XIAP-associated factor 1 (XAF1) was identified as a novel X-linked inhibitor of apoptosis (XIAP) binding partner that can reverse the anti-apoptotic effect of XIAP. XAF1 levels are greatly decreased in many cancer tissues and cell lines. The aim of this study was to investigate the expression of XAF1 and XIAP in advanced epithelial ovarian cancer and role of XAF1 in cisplatin resistance of ovarian cancer cells. Tissues from 94 patients with advanced epithelial ovarian cancer (EOC) and 30 ovarian cystadenomas were obtained. We analyzed the association of the immunohistochemical-determined expression of these two factors and clinicopathologic variables, overall survival, and angiogenesis. We established SKOV3 cells stably overexpressing XAF1 and explored the possible functions of XAF1 in ovarian cancer cells in vitro and in vivo. The protein expression of XAF1 was significantly lower and that of XIAP higher in malignant than nonmalignant tissues. Low XAF1 expression was associated with high-grade tumors and poor overall survival for patients. XAF1 expression was associated with microvessel density. Overexpression of XAF1 suppressed cell proliferation and enhanced SKOV3 cells sensitivity to cisplatin, as well as inhibited tumor growth and decreased MVD in vivo. Overexpression of XAF1 induced XIAP inactivation, caspase-3 activation and cytosolic expression of cytochrome c. These results suggested that XAF1 may be involved in ovarian cancer development and up-regulation of XAF1 may confer sensitivity of ovarian cancer cells to cisplatin-mediated apoptosis.  相似文献   

8.
9.
TRA-8, a monoclonal antibody to death receptor 5 induces apoptosis in various cancer cells; however, the degree of sensitivity varies from highly sensitive to resistant. We have previously shown that resistance to TRA-8 can be reversed by using chemotherapeutic agents, but the mechanism underlying this sensitization was not fully understood. Here, we examined the combination of TRA-8 with doxorubicin or bortezomib in breast cancer cells. In TRA-8-resistant BT-474 and T47D cells, both chemotherapy agents synergistically sensitized cells to TRA-8 cytotoxicity with enhanced activation of apoptosis shown by cleavage of caspases and PARP, reduced Bid, increased proapoptotic Bcl-2 proteins, and increased mitochondrial membrane depolarization. Doxorubicin or bortezomib combined with TRA-8 also reduced Bcl-XL and X-linked inhibitors of apoptosis (XIAP) in treated cells. Furthermore, targeting these proteins with pharmacologic modulators, AT-101, BH3I-2' and AT-406, produced sensitization to TRA-8. TRA-8 combined with AT-101 or BH3I-2', inhibitors of antiapoptotic Bcl-2 proteins, produced synergistic cytotoxicity against ZR-75-1, BT-474, and T47D cells. The IAP-targeting compound, AT-406, was synergistic with TRA-8 in BT-474 cells, and to a lesser extent T47D cells. Activation of the intrinsic apoptotic pathway was a common mechanism associated with sensitization of TRA-8-resistant breast cancer cell lines. Collectively, these studies show that the Bcl-2 and IAP families of proteins are involved in TRA-8 and chemotherapy resistance via their modulation of the intrinsic apoptotic pathway. Targeting these proteins with novel agents sensitized TRA-8-resistant breast cancer cells, suggesting this approach may represent a potent therapeutic strategy in the treatment of breast cancer.  相似文献   

10.
BRCA1 mutations have long been associated with altered apoptosis. We have recently reported that caspase 3 activation is increased in human ovarian surface epithelial (OSE) cells expressing a germline N-terminal BRCA1 185delAG mutation. Here, we report increased caspase 3 activity in 185delAG OSE cells associated with decreased expression of cIAP-1 and X-linked inhibitor of apoptosis (XIAP), and decreased ubiquitination of caspase 3. Overexpression of XIAP restored active caspase 3 ubiquitination and lowered levels of caspase 3 activity. Further, the BRCA1 185delAG mutation was associated with reduced levels of phosphorylated Akt1. Transfection with activated Akt1 led to increased cIAP-1 and XIAP levels similar to that seen in BRCA1 185delAG cell lines. Taken together, these data suggest a direct link between the BRCA1 185delAG mutation and alterations in the caspase-mediated apoptotic pathway.  相似文献   

11.
12.
The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05) (S2 Table). Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.  相似文献   

13.
This study examined if there are interactions between two key proteins that oppositely regulate intrinsic apoptosis, X-linked inhibitor of apoptosis protein (XIAP), a key suppressor of apoptosis that binds to inhibit active caspases, and glycogen synthase kinase-3 (GSK3), which promotes intrinsic apoptosis. Immunoprecipitation of GSK3β revealed that XIAP associates with GSK3β, as do two other members of the IAP family, cIAP-1, and cIAP-2. Cell fractionation revealed that XIAP is predominantly cytosolic, cIAP-1 is predominantly nuclear and nearly all of the nuclear cIAP-1 and cIAP-2 are associated with GSK3. Expression of individual domains of XIAP demonstrated that the RING domain of XIAP associates with GSK3. Inhibition of GSK3 did not alter the binding of XIAP to active caspase-9 or caspase-3 after stimulation of apoptosis with staurosporine. However, inhibition of GSK3 reduced apoptosis and apoptosome formation, including the recruitments of caspase-9 and XIAP to Apaf-1, in response to staurosporine treatment. Cell free measurements of apoptosome-induced caspase-3 activation demonstrated that GSK3 acts upstream of the apoptosome to facilitate intrinsic apoptotic signaling. This facilitation was blocked by overexpression of XIAP. These findings indicate that the RING domain of XIAP (and probably cIAP-1 and cIAP-2) associates with GSK3, GSK3 acts upstream of the apoptosome to promote intrinsic apoptosis, and the association between XIAP and GSK3 may block the pro-apoptotic function of GSK3.  相似文献   

14.
15.
A two-dimensional (2-D) liquid phase separation method, liquid isoelectric focusing followed by nonporous reversed-phase high performance liquid chromatography (HPLC), was used to separate proteins from human ovarian epithelial whole cell lysates. HPLC eluent was interfaced on-line to an electrospray ionization (ESI) time of flight (TOF) mass spectrometer to obtain accurate intact protein molecular weights (Mr). 2-D protein expression maps were generated displaying protein isoelectric point (pI) versus intact protein Mr. Resulting 2-D images effectively displayed quantitative differential protein expression in ovarian cancer cells versus non-neoplastic ovarian epithelial cells. Protein peak fractions were collected from the HPLC eluent, enzymatically digested, and analyzed by matrix-assisted laser desorption/ionization (MALDI) TOF-mass spectrometry (MS) peptide mass fingerprinting and by MALDI-quadrupole TOF tandem mass spectrometry peptide sequencing. Interlysate comparisons of differential protein expression between two ovarian adenocarcinoma cell lines, ES2 and MDAH-2774, and ovarian surface epithelial cells was performed. Five pI fractions from each sample were selected for comparative study and over 300 unique proteins were positively identified from the 2-D liquid expression maps using MS, which covered around 60% of proteins detected by on-line ESI-TOF-MS. This represents one of the most comprehensive proteomic analyses of ovarian cancer samples to date. Protein bands with significant up- or down-regulation in one cell line versus another as viewed in the 2-D expression maps were identified. This strategy may prove useful in identifying novel ovarian cancer marker proteins.  相似文献   

16.
Emerging evidence suggests that miR-143 plays an important role in the regulation of tumor sensitivity to chemotherapeutic agents. The study explores the underlying mechanism of miR-143 in reversing cisplatin resistance in ovarian cancer. The cisplatin-resistant ovarian cancer cell line A2780/CDDP was induced and established via treating A2780 cells by gradually increasing cisplatin concentrations. The IC50 values of A2780/CDDP and A2780 to cisplatin were 218.10 ± 1.12 and 21.99 ± 1.12 μM, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that miR-143 was significantly decreased in A2780/CDDP cells compared with A2780 cells. miR-143 overexpression decreased cisplatin resistance in A2780/CDDP, and miR-143 inhibition decreased A2780 sensitivity to cisplatin. Results of qRT-PCR, Western blot analysis, and luciferase reporter assay indicated that the direct target of miR-143 was DNMT3A, which, in turn, was upregulated in A2780/CDDP. DNMT3A overexpression antagonized the sensitizing effect of miR-143 on A2780/CDDP to cisplatin. Knocking down of DNMT3A reduced cisplatin resistance in A2780/CDDP, while overexpression of DNMT3A increased cisplatin resistance in A2780. Methylation-specific polymerase chain reaction results showed that the methylation level in the promoter region of the miR-143 precursor gene was higher in A2780/CDDP cells than in A2780 cells. DNMT3A mediated the hypermethylation of the miR-143 precursor gene, resulting in miR-143 downregulation in A2780/CDDP. miR-143 inhibited cell growth of A2780/CDDP cell in nude mice. Our findings indicated the negative feedback between miR-143 and DNMT3A as a crucial epigenetic modifier of cisplatin resistance in ovarian cancer.  相似文献   

17.
ARTS (Sept4_i2) is a pro-apoptotic tumor suppressor protein that functions as an antagonist of X-linked IAP (XIAP) to promote apoptosis. It is generally thought that mitochondrial outer membrane permeabilization (MOMP) occurs before activation of caspases and is required for it. Here, we show that ARTS initiates caspase activation upstream of MOMP. In living cells, ARTS is localized to the mitochondrial outer membrane. In response to apoptotic signals, ARTS translocates rapidly to the cytosol in a caspase-independent manner, where it binds XIAP and promotes caspase activation. This translocation precedes the release of cytochrome C and SMAC/Diablo, and ARTS function is required for the normal timing of MOMP. We also show that ARTS-induced caspase activation leads to cleavage of the pro-apoptotic Bcl-2 family protein Bid, known to promote MOMP. We propose that translocation of ARTS initiates a first wave of caspase activation that can promote MOMP. This leads to the subsequent release of additional mitochondrial factors, including cytochrome C and SMAC/Diablo, which then amplifies the caspase cascade and causes apoptosis.  相似文献   

18.
Frings W  Dreier J  Sorg C 《FEBS letters》2002,520(1-3):93-96
We have studied the expression of XIAP, cIAP-1 and cIAP-2 in fetal rat hepatocytes and its possible regulation by pro-apoptotic stimuli (transforming growth factor-β (TGF-β)) and survival signals (epidermal growth factor (EGF)). The three forms of inhibitor of apoptosis proteins (IAPs) are expressed in fetal hepatocytes and only cIAP-1, but not XIAP or cIAP-2, is cleaved during TGF-β-induced apoptosis. The pan-caspase inhibitor Z-VAD.fmk blocked this effect, which indicates that cIAP-1 is a caspase substrate. EGF plays a dual role in the regulation of IAPs expression. On one hand, it increases cIAP-1 and cIAP-2 basal expression and, on the other hand, it blocks the cleavage of cIAP-1 by caspases induced by TGF-β.  相似文献   

19.
20.
Farnesyl transferase inhibitors (FTIs) are novel antitumor drugs with clinical activity. FTIs inhibit cell growth not only by preventing direct Ras farnesylation but also through a Ras-independent pathway. Proteomics has been shown to be a powerful tool to monitor and analyze molecular networks and fluxes within the living cells and to identify the proteins that participate in these networks upon perturbation of the cellular environment. To observe early and dynamic protein changes in the cellular response to FTI in ovarian cancer cells, total proteins were extracted from 2774 cells treated or not with 10 microM manumycin, an FTI, for 3, 6 and 16 h. The proteins in the cells that were differentially expressed following treatment with manumycin for 3, 6 and 16 h were noted by two-dimensional electrophoresis and further identified by peptide mass fingerprinting as stress proteins. Both heat shock protein 70 (HSP70) and altered HSP70 were significantly up-regulated as early as 16 h in 2774 cells after exposure to manumycin. Since HSP70 plays an important role in protecting cells under stress, we treated the 2774 cells with the HSP inhibitor quercetin in combination with FTI. Quercetin dramatically enhanced the manumycin-mediated apoptosis in 2774 cells. Inducible HSP70 by manumycin in surviving ovarian cancer cells was also inhibited by quercetin as demonstrated by enzyme-linked immunosorbent assay. The inhibition of HSP70 by quercetin was correlated with enhancement of manumycin-induced mediated apoptosis in 2774 cells. The inhibition of HSP70 by 50 microM quercetin was also correlated with a decreased expression of procaspase-3 and enhancement of specific cleavage of poly (ADP-ribose) polymerase into apoptotic fragment in 2774 cells treated with manumycin. The interaction between the HSP70 inhibitor and FTI confirms the functional significance of the up-regulation of HSP70 as a protective mechanism against FTI-induced apoptosis and provides the framework for combination treatment of ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号