首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Evaluation of ricin A-chain immunotoxins directed against human T cells   总被引:3,自引:0,他引:3  
We have synthesized four immunotoxins (ITs) by covalently coupling the A chain of ricin to murine monoclonal antibodies that recognize surface antigens on human T cells. Treatment of human peripheral blood lymphocytes with either 10.2-A, directed against the CD5 (Tp67) antigen, or 64.1-A, directed against the CD3 (Tp19) antigen, abolished protein synthesis in cells subsequently cultured with phytohemagglutinin (PHA). In contrast, two other ITs (9.6-A and 35.1-A), both directed against the CD2 (Tp50) antigen, had minimal effects on protein synthesis in PHA-stimulated cells. The binding of each IT to T cells was shown by immunofluorescence with fluorescein-conjugated goat anti-mouse immunoglobulin (FITC-GAMIg) and fluorescein-conjugated rabbit anti-ricin A-chain (FITC-RAR) antibodies. Activity of the ricin A chain in each IT was demonstrated by its ability to inhibit protein synthesis in a cell-free reticulocyte lysate assay. Ultrastructural immunoperoxidase analysis of IT internalization showed that ineffective and effective ITs were endocytosed at the same rate (50% of cells had labeled endosomes after 15 min). However, ineffective IT 35.1-A was more rapidly delivered to lysosomes (15-30 min) than effective ITs (10.2-A and 64.1-A) (greater than or equal to 30 min). The data support the hypothesis that there are several distinct pathways for internalization of ITs and that the ability of ricin A chain to reach and inactivate ribosomes may depend upon the specific membrane receptor involved in binding a given IT, its route of internalization, and the rate of entry of the IT into lysosomes.  相似文献   

2.
Several variables influence the potency of an immunotoxin (IT) prepared with a monoclonal antibody (mAb) and ricin A chain (IT-A). These include the affinity of the mAb, the nature and density of the target antigen (Ag), the epitope on the target Ag bound by the mAb, the type of cell target, and the rate of endocytosis and route of internalization of the bound IT-A. In a previous report, we demonstrated that anti-delta mAbs directed against epitopes which are putatively more proximal to the plasma membrane make more effective IT-As than those directed against epitopes that are putatively more distal from the plasma membrane. It is known that the latter mAbs cross-link sIgD less effectively than the former. Therefore, in the present study, we determined whether the differential cytotoxicity of IT-As directed against these epitopes is related to their ability to cross-link their specific surface antigen (sIgD). We further determined whether they were internalized at different rates by normal B cells. Our results show that neither cross-linking nor rate of internalization account for the different potencies of anti-Fc vs anti-Fd IT-As. However, when these IT-As were used in the presence of the lysosomotropic agent chloroquine, the less potent IT-A became 100-fold more potent and was as cytotoxic as the effective anti-Fc IT-A. Taken together with the results of other studies, these findings further support the hypothesis that the epitope specificity of a given mAb may be an important factor in determining the intracellular routing of an IT-A after internalization.  相似文献   

3.
Binding monoclonal antibodies (MAb) both to D66 and 9.6/T11(1) epitopes on the CD2 [T,gp50]-defined molecule produces a high level of T cell mitosis. This was observed with a battery of MAb of different isotypes. In contrast, none of the anti-D66 or anti-9.6/T11(1)Ab could trigger T cell proliferation in combination with anti-T11(3). Moreover, all anti-D66-9.6/T11(1) pairs of MAb tested required monocytes to activate T cells which were recruited through their Fc receptors. Variations among normal individuals were observed in the level of response to anti-D66-9.6/T11(1) pairs of Ab, 75% of a population of French Caucasians giving a high response. The level of response of a given individual was determined by his accessory cells. However, the level of response of an individual appeared to be minimally influenced by the isotype of a peculiar anti-D66 or anti-9.6/T11(1) Ab. The addition of exogeneous IL 2 could overcome the removal of accessory cells or the modulation of CD3 molecules. In contrast, IL 2 receptor appearance was not overcome by removal of monocytes. Thus, T cell activation via CD2 seems to be produced by "touching" several definite regions of this molecule which trigger a cascade of events similar to those produced by mitogenic lectins. One can assume that the appropriate conformational changes of the CD2 molecule induced by anti-D66-9.6/T11(1) pairs of Ab are solely produced when they are presented by accessory cells. This leaves open the question of whether accessory cells would also play a more active role.  相似文献   

4.
When T lymphocytes from human blood or lymphoid organs are prepared by the sheep red blood cell (SRBC) rosetting procedure, glycoproteins of the SRBC membrane interact intimately with the CD2 (T11) molecule on the T cell surface. We now show that rosette formation has measurable short- and long-term effects upon the T cells. First, for a period of 24-48 hr after rosetting, the signal transducing and activation functions of the T3/Ti T cell antigen receptor complex is paralyzed for anti-T3-induced calcium mobilization, with a concomitant decrease in proliferative response to mitogens or stimulatory anti-T3 antibodies. Calcium mobilization through the alternate pathway of T cell activation, the T11/CD2 SRBC receptor, was also inhibited by rosetting. Second, rosetting appears to confer a partial stimulatory signal through the T11/CD2 pathway. Thus, 72 hr or more after rosetting, there was increased expression of the T11(3) activation epitope, and rosetted T cells were stimulated to proliferate in the presence of anti-T11(3) antibodies alone. These results provide further details on the effects of SRBC-T cell interactions, with important methodological implications. Moreover, they suggest a hitherto unrecognized down-regulatory effect of engaging the CD2 molecule, and provide further evidence that the T cell receptor is functionally interconnected to the CD2 activation pathway.  相似文献   

5.
Over the past decade, immunotoxins (IT) composed of mAb covalently coupled to toxins or their subunits have been developed for the treatment of malignancies and autoimmune diseases. Despite specific binding to target cells, not every mAb makes a therapeutically potent ricin A chain-containing IT (IT-A). A number of variables influence the potency of a mAb as an IT-A, including the affinity of the mAb, the nature and density of the cell surface Ag, and the type of target cell used. The present report investigates the influence of the epitope specificity of a mAb on the effectiveness of that mAb as an IT-A. Seven mAb directed against different regions of the mouse delta H chain of surface IgD, were conjugated to deglycosylated ricin A chain, and tested for their ability to kill murine B cells. The panel of IT-A had similar A chain activities and similar binding avidities. However, the mAb directed against epitopes in the Fc portion of surface IgD made more effective IT-A than those directed against epitopes in the Fd region. Overall, the anti-Fc-A were approximately 60- to 150-fold more toxic than the anti-Fd-A. Taken together with previous studies, these findings suggest that the epitope on a target Ag recognized by a given mAb is an important variable in determining the potency of a mAb as an IT-A.  相似文献   

6.
Recent studies have implicated sulfated polysaccharide (SP) recognition in a range of cell adhesion systems. Inasmuch as the CD2 (E rosette receptor, T11, LFA-2) molecule of human T lymphocytes is a cell surface glycoprotein involved in the adhesion of T cells to various target cells the possibility that CD2 binds SP was investigated. It was found that E rosetting of human T lymphocytes, a phenomenon involving CD2, was readily inhibited by the SP dextran sulfate (DxS) and, to a lesser extent, by the sulfated polymer polyvinyl sulfate whereas 11 other SP had no effect on E rosetting, this effect occurring at the T cell level. mAb binding studies revealed that DxS and polyvinyl sulfate, but none of the other SP tested, inhibited the binding to T cells of the anti-CD2 mAb OKT11 and anti-T112 but augmented expression of the T113 epitope of the CD2 molecule. In contrast, DxS had little or no effect on the binding of anti-CD3, -CD4, -CD8, -Pgp-1 and WT31 (TCR alpha/beta) mAb. Direct evidence that CD2 binds DxS was demonstrated by the ability of DxS-coupled fibers to totally deplete the CD2 Ag from lysates of radiolabeled human T lymphocytes and by the quantitative recovery of the CD2 Ag in fiber eluates. Control fibers coupled with other SP bound little or no CD2. Collectively, the data indicate that the CD2 molecule specifically binds DxS and suggest that a potential target cell ligand for CD2 is a sulfated carbohydrate structure.  相似文献   

7.
T lymphocyte activation with monoclonal antibodies directed against the CD2 (T,p50) sheep red blood cell receptor antigen and against CD3 (T,p19,29) has been investigated. Co-stimulation of purified T lymphocytes with anti-CD3 (SP34) and anti-CD2 (9-1), which detects a unique epitope on the CD2 molecule, results in T cell activation and cell proliferation. Each antibody alone is unable to mediate this effect. Co-stimulation of purified T cells with two different anti-CD2 antibodies, 9-1 and 9.6, which detect two different epitopes on the CD2 molecule, are also mitogenic. In contrast, the combination of anti-CD3 (SP34) and anti-CD2 (9.6) cannot induce T cell activation. These data suggest that the CD2 epitope defined by the 9-1 antibody is functionally important for T cell activation via the CD3/Ti complex. Furthermore, it is demonstrated that anti-CD3 (SP34) induces epitopic modulation of the CD2 molecule, resulting in enhanced expression of the CD2, 9-1 epitope. This epitope modulation of the CD2 (9-1) epitope by anti-CD3 (SP34) occurs instantaneously at 4 degrees C and in the presence of NaN3. The functional interaction between CD3 and CD2 occurs in spite of any evidence of complex formation between these two molecules. These data suggest that the T cell differentiation antigens CD3 and CD2 are jointly involved in antigen-specific T cell activation. The data are consistent with a model for antigen-specific T cell activation involving both the CD3/Ti complex and subsequent activation of the CD2 complex T cell activation by co-stimulation with anti-CD3 (SP34) and anti-CD2 (9-1) is substantially enhanced by the addition of exogenous, purified interleukin 1 (IL 1). These data would suggest that the CD2 complex, as well as the putative IL 1 receptor, are involved in separate and complementary receptor-ligand interactions, resulting in the amplification of antigen-specific T cell responses.  相似文献   

8.
Monoclonal antibody (MAb) GT2 defines a unique epitope on the CD2 molecule. GT2 triggers T cell mitosis in combination with any MAb directed against 9.6/T11(1) or D66, two previously defined CD2 epitopes. We have shown already that accessory cells (AC) are required for plenary T-PBL activation by any pair of Ab directed against D66 + 9.6/T11(1). In this study, we further investigated their role and found it to vary with the anti-CD2 pair used. When purified T-PBL preparation is used, the level of [3H]TdR incorporation observed with anti-(GT2 + 9.6/T11(1)) Ab was not significant; however, it did prove significant, although greatly reduced, with the other anti-CD2 pairs tested. This was due to qualitative differences in the process of T-PBL activation, and the role of AC, because: anti-(GT2 + 9.6/T11(1)) did not induce IL 2-R expression on purified T-PBL, whereas the other anti-CD2 pairs tested did; anti-(GT2 + 9.6/T11(1)) did not induce detectable IL 2 secretion from purified T-PBL, whereas the other anti-CD2 pairs tested induced a low amount; and anti-CDw18 Ab inhibited the mitogenic effect of anti-(GT2 + 9.6/T11(1)) on PBMC by preventing both IL 2-R expression and IL 2 secretion, whereas anti-CDw18 Ab enhanced the mitogenic effect of the other anti-CD2 pairs tested. Paraformaldehyde-fixed AC fully restored, and recombinant IL 1 partially restored purified T-PBL mitosis triggered by all anti-CD2 pairs tested. To induce IL 2 synthesis, the necessity to cross-link anti-CD2 Ab was demonstrated by coupling one Ab on Sepharose beads and adding the second Ab in the soluble phase: under these circumstances, anti-CD2 pairs were mitogenic solely in the presence of AC. These data can be interpreted as follows. Most anti-CD2 pairs require minimal contact between AC and T-PBL to induce plenary levels of IL 2 synthesis. When anti-(GT2 + 9.6/T11(1)) are used, additional contact is necessary, both for IL 2-R expression and IL 2 synthesis, which would include CDw18 for stabilization. We believe these differences could be related to different conformational changes on the CD2 molecule, depending on the epitope on which the antibodies bind, and could account for different signaling to T cells.  相似文献   

9.
Monoclonal antibodies OKT11A, 9.6, and 35.1 recognize epitopes on a 50000 dalton surface molecule (p50) identical to or closely associated with the sheep erythrocyte receptor (E receptor) on human T lymphocytes. These three antibodies were investigated for ability to inhibit T cell proliferation and interleukin 2 (IL 2) receptor acquisition (determined with anti-Tac antibody in an immunofluorescence assay) induced by the lectin mitogen phytohemagglutinin (PHA) or by the phorbol ester 12-O-tetradecanoyl-phorbol-13 acetate (TPA). OKT11A, 9.6, and 35.1 were found to suppress [3H]thymidine incorporation and IL 2 receptor acquisition stimulated by PHA but not by TPA. This inhibition was not attributable to a lag in kinetics, but was sustained throughout 4 to 5 days of culture. Because OKT11A and 9.6 have been reported to suppress lectin mitogen-induced IL 2 production, we attempted to overcome inhibition of proliferation with exogenous IL 2 (MLA144 supernatants or immunoaffinity-purified human IL 2). Adding IL 2 at the initiation of culture abrogated the suppressive effect of all three anti-p50 antibodies on proliferation and on the acquisition of IL 2 receptors, raising the possibility that IL 2 may up-regulate expression of its cellular receptor on human T lymphocytes. These data, together with previous reports, indicate that OKT11A, 9.6, and 35.1 suppress lectin mitogen-induced T cell proliferation by impairing both IL 2 elaboration and IL 2 receptor acquisition, and suggest that IL 2 may be capable, at least under some conditions, of increasing expression of IL 2 receptors on human T lymphocytes.  相似文献   

10.
Recent studies have demonstrated an essential role of Gag-specific CD4+ T-cell responses for viral control in individuals infected with human immunodeficiency virus type 1. However, little is known about epitope specificities and functional roles of the Gag-specific helper T-cell responses in terms of vaccine-induced protection against a pathogenic retroviral challenge. We have previously demonstrated that immunization with Friend murine leukemia virus (F-MuLV) Gag proteins protects mice against the fatal Friend retrovirus (FV) infection. We report here the structure of a protective T helper cell (Th) epitope, (I)VTWEAIAVDPPP, identified in the p15 (MA) region of F-MuLV Gag. In mice immunized with the Th epitope-harboring peptide or a vaccinia virus-expressed native full-length MA protein, FV-induced early splenomegaly regressed rapidly. In these mice, FV-infected cells were eliminated within 4 weeks and the production of virus-neutralizing antibodies was induced rapidly after FV challenge, resulting in strong protection against the virus infection. Interestingly, mice immunized with the whole MA mounted strong CD4+ T-cell responses to the identified Th epitope, whereas mice immunized with mutant MA proteins that were not bound to the plasma membrane failed to mount efficient CD4+ T-cell responses, despite the presence of the Th epitope. These mutant MA proteins also failed to induce strong protection against FV challenge. These data indicate the importance of the properly processible MA molecule for CD4+ T-cell priming and for the resultant induction of an effective immune response against retrovirus infections.  相似文献   

11.
We have applied MHC class I tetramers representing the two H2(b) MHC class I-restricted epitopes of the mouse male-specific minor transplantation Ag, HY, to directly determine the extent of expansion and immunodominance within the CD8+ T cell compartment following exposure to male tissue. Immunization with male bone marrow (BM), spleen, dendritic cells (DCs) and by skin graft led to rapid expansion of both specificities occupying up to >20% of the CD8+ T cell pool. At a high dose, whole BM or spleen were found to be more effective at stimulating the response than BM-derived DCs. In vivo, immunodominance within the responding cell population was only observed following chronic Ag stimulation, whereas epitope immunodominance was established rapidly following in vitro restimulation. Peptide affinity for the restricting MHC molecule was greater for the immunodominant epitope, suggesting that this might be a factor in the emergence of immunodominance. Using tetramers, we were able to directly visualize the cross-primed CD8+ HY response, but we did not find it to be the principal route for MHC class I presentation. Immunization with female spleen or DCs coated with the full complement of defined HY peptides, including the A(b)-restricted CD4+ Th cell determinant, failed to induce tetramer-reactive cells.  相似文献   

12.
Tumor-specific CD8 T cell responses to MCA102 fibrosarcoma cells expressing the cytotoxic T cell epitope gp33 from lymphocytic choriomeningitis virus were studied. MCA102(gp33) tumors grew progressively in C57BL/6 mice, despite induction of peripheral gp33-tetramer(+) T cells that were capable of mediating antiviral protection, specific cell rejection, and concomitant tumor immunity. MCA102(gp33) tumors were infiltrated with a high number ( approximately 20%) of CD11b(+)CD11c(-) macrophage-phenotype cells that were able to cross-present the gp33 epitope to T cells. Tumor-infiltrating CD8 T cells exhibited a highly activated phenotype but lacked effector cell function. Strikingly, a significant portion of tumor-infiltrating lymphocytes expressed TCRs specific for gp33 but bound MHC tetramers only after cell purification and a 24-h resting period in vitro. The phenomenon of "tetramer-negative T cells" was not restricted to tumor-infiltrating lymphocytes from MCA102(gp33) tumors, but was also observed when Ag-specific T cells derived from an environment with high Ag load were analyzed ex vivo. Thus, using a novel tumor model, allowing us to trace tumor-specific T cells at the single cell level in vivo, we demonstrate that the tumor microenvironment is able to alter the functional activity of T cells infiltrating the tumor mass.  相似文献   

13.
Self-reactive T cells that survive the process of positive and negative selection during thymocyte development represent potential effector cells against tumors that express these same self-Ags. We have previously shown that CD8+ T lymphocytes (T(CD8)) specific for an immunorecessive epitope, designated epitope V, from the SV40 large T Ag (Tag) escape thymic deletion in line SV11 Tag-transgenic mice. In contrast, these mice are tolerant to the three most dominant Tag epitopes. The majority of the residual epitope V-specific T(CD8) have a low avidity for the target epitope, but a prime/boost regimen can expand higher avidity clones in vivo. Whether higher avidity T(CD8) targeting this epitope are affected by Tag-expressing tumors in the periphery or can be recruited for control of tumor progression remains unknown. In the current study, we determined the fate of naive TCR-transgenic T(CD8) specific for Tag epitope V (TCR-V cells) following transfer into SV11 mice bearing advanced-stage choroid plexus tumors. The results indicate that TCR-V cells are rapidly triggered by the endogenous Tag and acquire effector function, but fail to accumulate within the tumors. Primary immunization enhanced TCR-V cell frequency in the periphery and promoted entry into the brain, but a subsequent booster immunization caused a dramatic accumulation of TCR-V T cells within the tumors and inhibited tumor progression. These results indicate that epitope V provides a target for CD8+ T cells against spontaneous tumors in vivo, and suggests that epitopes with similar properties can be harnessed for tumor immunotherapy.  相似文献   

14.
Recombinant TCRs confer specificity to T cells and trigger their activation. Receptors with Ab-derived binding domains have the advantages of MHC-independent Ag recognition and of targeting a variety of chemically different molecules. We explored the impact of the position of a defined epitope within the target molecule on the efficacy of receptor-mediated T cell activation. T cells were grafted with recombinant immunoreceptors that recognize either the membrane distal N or the proximal A3 domain of carcinoembryonic Ag (CEA). Upon binding to isolated, solid-phase immobilized CEA, receptor-mediated T cell activation correlates with the binding efficiency, irrespectively, of the epitope position. Upon binding to CEA expressed on the cell membrane, in contrast, the A3 epitope mediates more efficiently T cell activation than the N epitope, although the N epitope is bound with higher affinity. The CEA N epitope when expressed in a more membrane proximal position, however, activated receptor grafted T cells with higher efficiency than in the distal position. The position of the targeted epitope within the molecule obviously has major impact on the efficacy of T cell activation independently of the binding efficiency of the immunoreceptor.  相似文献   

15.
《Translational oncology》2022,15(12):101232
The pancaner molecule CD276 (B7-H3) is an attractive target for antibody based therapy. We identified from a large (1011) phage-displayed single-chain variable fragment (scFv) library, a fully human antibody, B11, which bound with high avidity (KD=0.4 nM) to CD276. B11 specifically bound to the V1/V2 domain of CD276 and competed with the antibody 8H9 (Omburtamab). It was used to design an IgG-format bispecific T cell engager B11-BiTE, which was more effective than 8H9-BiTE in 14 different cancer cell lines. B11-BiTE also exhibited strong ADCC/ADCP. Therefore, the fully human B11-BiTE is a promising candidate for treatment of tumors expressing CD276.  相似文献   

16.
《Translational oncology》2021,14(12):101232
The pancaner molecule CD276 (B7-H3) is an attractive target for antibody based therapy. We identified from a large (1011) phage-displayed single-chain variable fragment (scFv) library, a fully human antibody, B11, which bound with high avidity (KD=0.4 nM) to CD276. B11 specifically bound to the V1/V2 domain of CD276 and competed with the antibody 8H9 (Omburtamab). It was used to design an IgG-format bispecific T cell engager B11-BiTE, which was more effective than 8H9-BiTE in 14 different cancer cell lines. B11-BiTE also exhibited strong ADCC/ADCP. Therefore, the fully human B11-BiTE is a promising candidate for treatment of tumors expressing CD276.  相似文献   

17.
Jung KC  Kim NH  Park WS  Park SH  Bae Y 《FEBS letters》2003,554(3):478-484
The CD99 antigen has been implicated in various cellular processes, including apoptosis in T cells. Previously, we reported two monoclonal antibodies that recognize different epitopes of the CD99 molecule, named DN16 and YG32. In this study, we investigated the role of each CD99 epitope in T cell apoptosis. Unlike the DN16 epitope, CD99 ligation via the YG32 epitope failed to induce T cell death. Surprisingly, however, the YG32 signal enhanced Fas-mediated apoptosis in Jurkat T cells. Augmentation of Fas-mediated apoptosis by YG32 ligation was inhibited by treatment with either of the caspase inhibitors z-VAD-fmk or z-IETD-fmk, and YG32 ligation appeared to induce Fas oligomerization. These results suggest that each CD99 epitope plays a distinct role in T cell biology, especially in T cell apoptosis.  相似文献   

18.
LFA-1, a member of the integrin family of molecules, is involved in mediating cellular adhesion in all phases of the immune response, playing a role in the interaction of helper T cells as well as in killing of target cells by both cytotoxic T cells and natural killer cells. We have developed a monoclonal antibody, anti-HVS6B6, which recognizes a functionally unique epitope of the LFA-1 molecule. Although this mAb itself was not mitogenic against T cells, it induced a strong proliferative response when added to T cells with submitogenic concentrations of anti-CD2 (anti-T11(2) and anti-T11(3)) mAbs. In contrast, other anti-LFA-1 mAbs (CD11a and CD18) suppressed this anti-CD2 mAb-induced T cell proliferation. Kinetic studies showed that anti-HVS6B6 acts on an early event in CD2-mediated T cell activation. Although T11(3)-epitope expression induced by anti-T11(2) mAb was not affected by treatment of cells with anti-HVS6B6, both Ca2+ influx and phosphatidylinositol turnover induced by anti-CD2 mAbs were markedly enhanced by the pretreatment of T cells with anti-HVS6B6 mAb. These results indicate that the LFA-1 mediating signal contributes to a very early phase of signal transduction during CD2-mediated T cell activation.  相似文献   

19.
Virus-specific CD4+ T cell help and CD8+ cytotoxic T cell responses are critical for maintenance of effective immunity in chronic viral infections. The importance of CD4+ T cells has been documented in HIV infection. To investigate whether a stronger CD4+ T cell response can be induced by modifications to enhance the T1 epitope, the first CD4+ T cell epitope discovered in HIV-1-gp120, we developed a T1-specific CD4+ T cell line from a healthy volunteer immunized with a canarypox vector expressing gp120 and boosted with recombinant gp120. This T1-specific CD4+ T cell line was restricted to DR13, which is common in U.S. Caucasians and African-Americans and very frequent in Africans. Peptides with certain amino acid substitutions in key positions induced enhanced specific CD4+ T cell proliferative responses at lower peptide concentration than the original epitope. This relatively conserved CD4 epitope improved by the epitope enhancement strategy could be a component of a more effective second generation vaccine construct for HIV infection.  相似文献   

20.
CD8(+) T cells are essential for host defense to intracellular bacterial pathogens such as Mycobacterium tuberculosis (Mtb), Salmonella species, and Listeria monocytogenes, yet the repertoire and dominance pattern of human CD8 antigens for these pathogens remains poorly characterized. Tuberculosis (TB), the disease caused by Mtb infection, remains one of the leading causes of infectious morbidity and mortality worldwide and is the most frequent opportunistic infection in individuals with HIV/AIDS. Therefore, we undertook this study to define immunodominant CD8 Mtb antigens. First, using IFN-gamma ELISPOT and synthetic peptide arrays as a source of antigen, we measured ex vivo frequencies of CD8(+) T cells recognizing known immunodominant CD4(+) T cell antigens in persons with latent tuberculosis infection. In addition, limiting dilution was used to generate panels of Mtb-specific T cell clones. Using the peptide arrays, we identified the antigenic specificity of the majority of T cell clones, defining several new epitopes. In all cases, peptide representing the minimal epitope bound to the major histocompatibility complex (MHC)-restricting allele with high affinity, and in all but one case the restricting allele was an HLA-B allele. Furthermore, individuals from whom the T cell clone was isolated harbored high ex vivo frequency CD8(+) T cell responses specific for the epitope, and in individuals tested, the epitope represented the single immunodominant response within the CD8 antigen. We conclude that Mtb-specific CD8(+) T cells are found in high frequency in infected individuals and are restricted predominantly by HLA-B alleles, and that synthetic peptide arrays can be used to define epitope specificities without prior bias as to MHC binding affinity. These findings provide an improved understanding of immunodominance in humans and may contribute to a development of an effective TB vaccine and improved immunodiagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号