首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonance Raman spectra of ferrous and ferric cytochrome c peroxidase and Compound ES and their pH dependences were investigated in resonance with Soret band. The Fe(IV) = O stretching Raman line of Compound ES was assigned to a broad band around 767 cm-1, which was shifted to 727 cm-1 upon 18O substitution. The 18O-isotopic frequency shift was recognized for Compound ES derived in H218O, but not in H216O. This clearly indicated occurrence of an oxygen exchange between the Fe(IV) = O heme and bulk water. The Fe(IV) = O stretching Raman band was definitely more intense and of higher frequency in D2O than in H2O as in Compound II of horseradish peroxidase, but in contrast with this its frequency was unaltered between pH 4 and 11. The Fe(II)-histidine stretching Raman line was assigned on the basis of the frequency shift observed for 54Fe isotopic substitution. From the intensity analysis of this band, the pKa of the heme-linked ionization of ferrocytochrome c peroxidase was determined to be 7.3. The Raman spectrum of ferricytochrome c peroxidase strongly suggested that the heme is placed under an equilibrium between the 5- and 6-coordinate high-spin structures. At neutral pH it is biased to the 5-coordinate structure, but at the acidic side of the transition of pKa = 5.5 the 6-coordinate heme becomes dominant. F- was bound to the heme iron at pH 6, but Cl- was bound only at acidic pH. Acidification by HNO3, H2SO4, CH3COOH, HBr, or HI resulted in somewhat different populations of the 5- and 6-coordinate forms when they were compared at pH 4.3. Accordingly, it is inferred that a water molecule which is suggested to occupy the sixth coordination position of the heme iron is not coordinated to the heme iron at pH 6 but that protonation of the pKa = 5.5 residue induces an appreciable structural change, allowing the coordination of the water molecule to the heme iron.  相似文献   

2.
Resonance Raman investigations on compound II of native, diacetyldeuteroheme-, and manganese-substituted horseradish peroxidase (isozyme C) revealed that the metal-oxygen linkage in the compound differed from one another in its bond strength and/or structure. Fe(IV) = O stretching frequency for compound II of native enzyme was pH sensitive, giving the Raman line at 772 and 789 cm-1 at pH 7 and 10, respectively. The results confirmed the presence of a hydrogen bond between the oxo-ligand and a nearby amino acid residue (Sitter, A. J., Reczek, C. M., and Terner, J. (1985) J. Biol. Chem. 260, 7515-7522). The Fe(IV) = O stretch for compound II of diacetylheme-enzyme was located at 781 cm-1 at pH 7 which was 9 cm-1 higher than that of native enzyme compound II. At pH 10, however, the Fe(IV) = O stretch was found at 790 cm-1, essentially the same frequency as that of native enzyme compound II. The pK value for the pH transition, 8.5, was also the same as that of native compound II. Unlike in native enzyme, D2O-H2O exchange did not cause a shift of the Fe(IV) = O frequency of diacetylheme-enzyme. Thus, the metal-oxygen bond at pH 7 was stronger in diacetylheme-enzyme due to a weaker hydrogen bonding to the oxo-ligand, while the Fe(IV) = O bond strength became essentially the same between both enzymes at alkaline pH upon disruption of the hydrogen bond. A much lower reactivity of the diacetylheme-enzyme compound II was accounted to be due to the weaker hydrogen bond. Compound II of manganese-substituted enzyme exhibited Mn(IV)-oxygen stretch about 630 cm-1, which was pH insensitive but down-shifted by 18 cm-1 upon the D2O-H2O exchange. The finding indicates that its structure is in Mn(IV)-OH, where the proton is exchangeable with a water proton. These results establish that the structure of native enzyme compound II is Fe(IV) = O but not Fe(IV)-OH.  相似文献   

3.
Horseradish peroxidase will catalyze the chlorination of certain substrates by sodium chlorite through an intermediate known as compound X. A chlorite-derived chlorine atom is known to be retained by compound X and has been proposed to be located at the heme active site. Although several heme structures have been proposed for compound X, including an Fe(IV)-OCl group, preliminary data previously reported by our laboratory suggested that compound X contained a heme Fe(IV) = O group, based on the similarity of a compound X resonance Raman band at 788 cm-1 to resonance Raman Fe(IV) = O stretching vibrations recently identified for horseradish peroxidase compound II and ferryl myoglobin. Isotopic studies now confirm that the 788 cm-1 resonance Raman band of compound X is, in fact, due to a heme Fe(IV) = O group, with the oxygen atom derived from chlorite. The Fe(IV) = O frequency of compound X, of horseradish peroxidase isoenzymes B and C, undergoes a pH-induced frequency shift, with behavior which appears to be the same as that previously reported for compound II, formed from the same isoenzymes. These observations strongly suggest that compounds II and X have very similar, if not identical, heme structures. The chlorine atom thus appears not to be heme-bound and may rather be located on an amino acid residue. The studies on compound X reported here were done in a pH region above pH 8, where compound X is moderately stable. The present results do not necessarily apply to compound X below pH 8.  相似文献   

4.
Resonance Raman spectroscopy has been used to investigate the structure and environment of the heme group in bovine liver catalase compound II. Both Soret- and Q-band excitation have been employed to observe and assign the skeletal stretching frequencies of the porphyrin ring. The oxidation state marker band v4 increases in frequency from 1373 cm-1 in ferricatalase to 1375 cm-1 in compound II, consistent with oxidation of the iron atom to the Fe(IV) state. Oxidation of five-coordinate, high-spin ferricatalase to compound II is accompanied by a marked increase of the porphyrin core marker frequencies that is consistent with a six-coordinate low-spin state with a contracted core. An Fe(IV) = O stretching band is observed at 775 cm-1 for compound II at neutral pH, indicating that there is an oxo ligand at the sixth site. At alkaline pH, the Fe(IV) = O stretching band shifts to 786 cm-1 in response to a heme-linked ionization that is attributed to the distal His-74 residue. Experiments carried out in H218O show that the oxo ligand of compound II exchanges with bulk water at neutral pH, but not at alkaline pH. This is essentially the same behavior exhibited by horseradish peroxidase compound II and the exchange reaction at neutral pH for both enzymes is attributed to acid/base catalysis by a distal His residue that is believed to be hydrogen-bonded to the oxo ligand. Thus, the structure and environment of the heme group of the compound II species of catalase and horseradish peroxidase are very similar. This indicates that the marked differences in their reactivities as oxidants are probably due to the manner in which the protein controls access of substrates to the heme group.  相似文献   

5.
We report the first evidence for the formation of the "607- and 580-nm forms" in the cytochrome oxidase aa3/H2O2 reaction without the involvement of tyrosine 280. The pKa of the 607-580-nm transition is 7.5. The 607-nm form is also formed in the mixed valence cytochrome oxidase/O2 reaction in the absence of tyrosine 280. Steady-state resonance Raman characterization of the reaction products of both the wild-type and Y280H cytochrome aa3 from Paracoccus denitrificans indicate the formation of six-coordinate low spin species, and do not support, in contrast to previous reports, the formation of a porphyrin pi-cation radical. We observe three oxygen isotope-sensitive Raman bands in the oxidized wild-type aa3/H2O2 reaction at 804, 790, and 358 cm-1. The former two are assigned to the Fe(IV)[double bond]O stretching mode of the 607- and 580-nm forms, respectively. The 14 cm-1 frequency difference between the oxoferryl species is attributed to variations in the basicity of the proximal to heme a3 His-411, induced by the oxoferryl conformations of the heme a3-CuB pocket during the 607-580-nm transition. We suggest that the 804-790 cm-1 oxoferryl transition triggers distal conformational changes that are subsequently communicated to the proximal His-411 heme a3 site. The 358 cm-1 mode has been found for the first time to accumulate with the 804 cm-1 mode in the peroxide reaction. These results indicate that the mechanism of oxygen reduction must be reexamined.  相似文献   

6.
The resonance Raman spectra of the two affinity states of the CO-ligated monomeric insect hemoglobins, Chironomus thummi thummi (CTT) III ad IV, have been investigated. We have identified (via 54Fe/57Fe and 13C18O/12C16O isotope exchange) the Fe-N epsilon(His) stretching mode at approximately 317 cm-1. This stretching mode changes from 329 (pH 5.5) to 317 cm-1 (pH 9.5) reflecting the pH-induced t in equilibrium with r conformational transition. The Fe-CO stretching mode is also pH-sensitive changing from 483 (pH 5.2) to 485 cm-1 (pH 9.2) in 57Fe CTT III . 13C18O complex. However the C-O stretching mode is pH-insensitive. The nonallosteric monomeric insect hemoglobin CTT I does not exhibit a pH-dependence of these vibrational modes. pH-Induced effects were also observed for a vinyl bending mode at 379 cm-1 (pH 9.5) in CTT III deuterated at the beta-carbons of the vinyls in position 2 and 4. It shifts to 390 cm-1 at pH 5.5. The other vinyl vibration at 573 cm-1 exhibits intensity enhancement via through-space coupling with the Fe-C-O bending mode. Our resonance Raman data provide the first direct evidence that the trans-effect is operative as a trigger mechanism for ligand-binding in monomeric allosteric insect hemoglobins. In going from the low-affinity to the high-affinity state, the Fe-N epsilon(His) bond becomes weaker, whereas the Fe-CO bond becomes stronger.  相似文献   

7.
The FeIV=O stretching vibration has never been identified for a cysteine-coordinated heme enzyme. In this study, resonance Raman and visible absorption spectra were observed simultaneously for transient species in the catalytic reaction of chloroperoxidase with hydrogen peroxide by using our original apparatus for mixed-flow and Raman/absorption simultaneous measurements. For the first intermediate, the FeIV=O stretching Raman band was observed at 790 cm-1, which shifted to 756 cm-1 with the 18O derivative, but the v4 band was too weak to be identified. This suggested the formation of an oxoferryl porphyrin pi cation radical. The second intermediate gave an intense v4 band at 1,372 cm-1 but no oxygen isotope-sensitive Raman band, suggesting oxygen exchange with bulk water.  相似文献   

8.
Fe(IV)=O resonance Raman stretching vibrations were recently identified by this laboratory for horseradish peroxidase compound II and ferryl myoglobin. In the present report it is shown that Fe(IV)=O stretching frequency for horseradish peroxidase compound II will switch between two values depending on pH, with pKa values corresponding to the previously reported compound II heme-linked ionizations of pKa = 6.9 for isoenzyme A-2 and pKa = 8.5 for isoenzyme C. Similar pH-dependent shifts of the Fe(IV)=O frequency of ferryl myoglobin were not detected above pH 6. The Fe(IV)=O stretching frequencies of compound II of the horseradish peroxidase isoenzymes at pH values above the transition points were at a high value approaching the Fe(IV)=O stretching frequency of ferryl myoglobin. Below the transition points the horseradish peroxidase frequencies were found to be 10 cm-1 lower. Frequencies of the Fe(IV)=O stretching vibrations of horseradish peroxidase compound II for one set of isoenzymes were found to be sensitive to deuterium exchange below the transition point but not above. These results were interpreted to be indicative of an alkaline deprotonation of a distal amino acid group, probably histidine, which is hydrogen bonded to the oxyferryl group below the transition point. Deprotonation of this group at pH values above the pKa disrupts hydrogen bonding, raising the Fe(IV)=O stretching frequency, and is proposed to account for the lowering of compound II reactivity at alkaline pH. The high value of the Fe(IV)=O vibration of compound II above the transition point appears to be identical in frequency to what is believed to be the Fe(IV)=O vibration of compound X.  相似文献   

9.
Resonance Raman and visible absorption spectra were simultaneously observed for cytochrome oxidase reaction intermediates at 5 degrees C by using the artificial cardiovascular system (Ogura, T., Yoshikawa, S., and Kitagawa, T. (1989) Biochemistry 28, 8022-8027) and a device for Raman/absorption simultaneous measurements (Ogura, T., and Kitagawa, T. (1988) Rev. Sci. Instrum. 59, 1316-1320). The Fe4+ = O stretching (nu FeO) Raman band was observed at 788 cm-1 for compound B for the first time. This band showed the 16O/18O isotopic frequency shift (delta nu FeO) by 40 cm-1, in agreement with that for horseradish peroxidase compound II (nu FeO = 787 cm-1 and delta nu FeO = 34 cm-1). In the time region when the FeII-O2 stretching band for compound A and the nu FeO band for compound B were coexistent, a Raman band assignable to the Fe3+-O-O-Cu2+ linkage was not recognized.  相似文献   

10.
To investigate heme-protein coupling via the Fe(2+)-N epsilon (His F8) linkage we have measured the profile of the Raman band due to the Fe(2+)-N epsilon (His F8) stretching mode (nu Fe-His) of deoxyHb-trout IV and deoxyHbA at various pH between 6.0 and 9.0. Our data establish that the band of this mode is composed of five different sublines. In deoxyHb-trout IV, three of these sublines were assigned to distinct conformations of the alpha-subunit (omega alpha 1 = 202 cm-1, omega alpha 2 = 211 cm-1, omega alpha 3 = 217 cm-1) and the other two to distinct conformations of the beta-subunit (omega beta 1 = 223 cm-1 and omega beta 2 = 228 cm-1). Human deoxyHbA exhibits two alpha-chain sublines at omega alpha 1 = 203 cm-1, omega alpha 2 = 212 cm-1 and two beta-chain sublines at omega beta 1 = 217 cm-1 and omega beta 2 = 225 cm-1. These results reveal that each subunit exists in different conformations. The intensities of the nu Fe-His sublines in deoxyHb-trout IV exhibit a significant pH dependence, whereas the intensities of the corresponding sublines in the deoxyHbA spectrum are independent on pH. This finding suggests that the structural basis of the Bohr effect is different in deoxyHbA and deoxyHb-trout IV. To analyse the pH dependence of the deoxyHb-trout IV sublines we have applied a titration model describing the intensity of each nu Fe-His subline as an incoherent superposition of the intensities from sub-sublines with the same frequency but differing intrinsic intensities due to the different protonation states of the respective subunit. The molar fractions of these protonation states are determined by the corresponding Bohr groups (i.e., pK alpha 1 = pK alpha 2 = 8.5, pK beta 1 = 7.5, pK beta 2 = 7.4) and pH. Hence, the intensities of these sublines reflect the pH dependence of the molar fractions of the involved protonation states. Fitting this model to the pH-dependent line intensities yields a good reproduction of the experimental data.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Resonance Raman (RR) spectra of the "rapid" and "slow" forms (Baker et al., 1987) of resting cytochrome oxidase obtained with Soret excitation at 413.1 nm are reported. There are a number of conspicuous differences between the two forms in the high-frequency region of the RR spectrum which involve changes in Raman intensity arising from a blue shift in the Soret maximum of cytochrome a3 upon conversion to the slow form. In the low-frequency region a peak present at 223 cm-1 in the rapid form shifts to 220 cm-1 in the slow form; this peak is assigned as the cytochrome a3 Fe(III)-N(His-Im) stretch. The slow form of the enzyme possesses greater intensity in RR peaks near 1620 cm-1 which have been previously attributed by others to partial photoreduction of the enzyme. We have quantitated the amount of laser-induced photoreduction in these RR spectra by comparison with the spectra of mixed-valence derivatives of the enzyme and find that these 1620-cm-1 features are unreliable indicators of photoreduction. The spectra of the fast- and slow-reacting species in H2O and D2O have been compared. The fast-reacting form exhibits a 4-cm-1 shift, from 223 to 219 cm-1, upon transferring to D2O in a peak which we assign as the cytochrome a3 Fe(III)-N(His-Im) stretch. There is a parallel shift in the feature at 1651 cm-1 due to the C = O stretch of the formyl group of cytochrome a. These deuterium shifts are not observed in the slow form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The resonance Raman spectra of riboflavin (RF) and its derivatives, including 3-deuterated (3-D RF), 3-methyl (3-CH3 RF), 3-carboxymethyl (3-CH2COOH RF), and 7,8-dichlororiboflavins (7,8-Cl RF), in H2O and D2O were observed in the 700-1700 cm-1 region. The fluorescence problem of riboflavin was overcome by complex formation of riboflavin with riboflavin binding proteins. The observed frequencies of Raman lines of RF are in good agreement with those of glucose oxidase obtained by Spiro et al. by the resonance CARS method, although the present spectral range is extended to much lower frequency with a higher signal-to-noise ratio than that for glucose oxidase. The observed Raman lines were assigned to the individual ring modes of isoalloxazine on the basis of the Raman spectra of appropriate model compounds such as uracil, pyrazine, and o-xylene. The 1253 cm-1 line of RF was shifted to ca. 1300 cm-1 for 3-D RF, 3-CH3 RF, and 3-CH2COOH RF, and accordingly can be assigned to the CN stretching mode of Ring III. The 1632 cm-1 line of RF was shifted for 7,8-Cl RF and was assigned to a Ring I mode. No Raman line mainly due to C = O stretching mode was observed in the present resonance Raman spectra.  相似文献   

13.
Resonance Raman spectra of the reduced form of cytochrome c oxidase isolated from bovine heart and the thermophilic bacterium PS3 were investigated in relation to their H+-pumping- and cytochrome-c-oxidizing activities, which were varied by incubating the enzyme at raised temperatures or at alkaline pH at room temperature. For both the bovine and PS3 enzymes, the intensity of the iron-histidine stretching Raman line of the ferrous a3 heme (214 cm-1) exhibited an incubation-temperature-dependent change, which fell between the similar curves of the H+-pumping and cytochrome-c-oxidizing activities. The intensities of the formyl CH=O stretching Raman line of the ferrous a3 heme (1665 cm-1) as well as of other lines were insensitive to the heat treatment. The iron-histidine stretching Raman line of both enzymes showed pH-dependent intensity change which was nearly parallel with the pH dependence of cytochrome-c-oxidizing activity. Therefore, deprotonation affecting the 214 cm-1 Raman line is responsible for the decrease of activity. This limited alkaline treatment to the PS3 enzyme was reversible and the recovered enzyme exhibited Raman intensities and enzymic activities similar to the native one. However, the neutralized, bovine enzyme with a similar intensity of the 214 cm-1 line showed increased cytochrome-c-oxidizing activity and null H+-pumping activity.  相似文献   

14.
The substitution of iron for cobalt in the monomeric insect hemoglobin CTT (Chironomus thummi thummi) III does not alter the Bohr effect for O2-binding. The cobalt substitution in this hemoglobin allows us to identify not only the O-O and Co-O2 stretching mode but also the Co-O-O bending mode by resonance Raman spectroscopy. The assignments were made via 16O2/18O2 isotope exchange. The modes associated with the Co-O-O moiety are pH-dependent. These pH-induced changes of the resonance Raman spectra are correlated with the t = r conformation transition. At high pH (high-affinity state) two unperturbed O-O stretching modes are observed at 1,068 cm-1 (major component) and 1,093 cm-1 (minor component) for the 18O2 complex. These frequencies correspond to split modes at 1,107 cm-1 and 1,136 cm-1 and an unperturbed mode at approximately 1,153 cm-1 for the 16O2 complex. At low pH (low-affinity state) the minor component becomes the major component and vice versa. The Co-O2 stretching frequency varies for approximately 520 cm-1 (pH 5.5) to 537 cm-1 (pH 9.5) indicating a stronger (hence shorter) Co-O2 bond in the high-affinity state. On the other hand, the O-O bond is weakened upon the conversion of the low- to the high-affinity state. The Co-O-O bending mode changes from 390 cm-1 (pH 9.5) to 374 cm-1 (pH 5.5). In the deoxy form the resonance Raman spectra are essentially pH-insensitive except for a vinyl mode at 414 cm-1 (pH 5.5), which is shifted to 416 cm-1 (pH 5.5).  相似文献   

15.
Resonance Raman spectra of the ferrous CO complex of cytochrome P-450cam have been observed both in its camphor-bound and free states. Upon excitation at 457.9 nm, near the absorption maximum of the Soret band, the ferrous CO complex of the camphor-bound enzyme showed an anomalously intense Raman line at 481 cm-1 besides the strong Raman lines at 1366 and 674 cm-1 for the porphyrin vibrations. The Raman line at 481 cm-1 (of the 12C16O complex) shifted to 478 cm-1 upon the substitution by 13C16O and to 473 cm-1 by 12C18O without any detectable shift in porphyrin Raman lines. This shows that the line at 481 cm-1 is assignable to Fe-CO stretching vibration. By the excitation at 457.9 nm, a weak Raman line was also observed at 558 cm-1, which was assigned to the Fe-C-O bending vibration, because it was found to shift by -14 cm-1 on 13C16O substitution while only -3 cm-1 on 12C18O substitution. These stretching and bending vibrations of the Fe-CO bond were not detected with the excitation at 413.1 nm, though the porphyrin Raman lines at 1366 and 674 cm-1 were clearly observed. When the substrate, camphor, was removed from the enzyme, the Fe-CO stretching vibration was found to shift to 464 cm-1 from 481 cm-1, while no detectable changes were found in porphyrin Raman lines. This means that the bound substrate interacts predominantly with the Fe-CO portion of the enzyme molecule.  相似文献   

16.
T Ogura  S Yoshikawa  T Kitagawa 《Biochemistry》1985,24(26):7746-7752
Occurrence of photoreduction of bovine cytochrome c oxidase was confirmed with the difference absorption spectra and oxygen consumption measurements for the enzyme irradiated with laser light at 406.7, 441.6, and 590 nm. The resonance Raman spectra were obtained under the same experimental conditions as those adopted for the measurements of oxygen consumption and difference absorption spectra. The photoreduction was more effective upon irradiation at shorter wavelengths and was irreversible under anaerobic conditions. However, upon aeration into the cell, the original oxidized form was restored. It was found that aerobic laser irradiation produces a photo steady state of the catalytic dioxygen reduction and that the Raman scattering from this photo steady state probes cytochrome a2+ and cytochrome a3(3)+ separately upon excitations at 441.6 and 406.7 nm, respectively. The enzyme was apparently protected from the photoreduction in the spinning cell with the spinning speed between 1 and 1500 rpm. These results were explained satisfactorily with the reported rate constant for the electron transfer from cytochrome a to cytochrome a3 (0.58 s-1) and a comparable photoreduction rate of cytochrome a. The anaerobic photoreduction did give Raman lines at 1666 and 214 cm-1, which are characteristic of the ferrous high-spin cytochrome a3(2)+, but they were absent under aerobic photoreduction. The formyl CH = O stretching mode of the a3 heme was observed at 1671 cm-1 for a2+a3(2)+CO but at 1664 cm-1 for a2+a3(2)+CN-, indicating that the CH = O stretching frequency reflects the pi back-donation to the axial ligand similar to the oxidation state marker line (v4).  相似文献   

17.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1987,26(14):4535-4540
Interactions of cholesterol analogues and inhibitors with the heme moiety of cytochrome P-450scc were examined by resonance Raman spectroscopy. The Raman spectra of ferric cytochrome P-450scc complexed with inhibitors such as cyanide, phenyl isocyanide, aminoglutethimide, and metyrapone were characteristic of low-spin state and were very similar. However, the effect of exchange of the sixth ligand from the oxygen atom (ferric low-spin state) to the nitrogen atom upon aminoglutethimide and metyrapone binding was seen as down-frequency shifts of the v3 band from 1503 to 1501 and 1502 cm-1, respectively, while cyanide and phenyl isocyanide binding caused an up-frequency shift of the v3 band to 1505 cm-1. The effects of cholesterol analogues [22(R)-hydroxycholesterol, 22(S)-hydroxycholesterol, 22-ketocholesterol, 20(S)-hydroxycholesterol, and 25-hydroxycholesterol] on a Fe2+-CO stretching frequency of cytochrome P-450scc in ferrous CO form were examined. The 22(R)-hydroxycholesterol complex could not give a clear Fe2+-CO stretching Raman band due to a strong photodissociability. 22(S)-Hydroxycholesterol and 25-hydroxycholesterol complexes gave the Raman bands at 487 and 483 cm-1, respectively, whereas 20(S)-hydroxycholesterol and 22-ketocholesterol complexes gave Fe2+-CO stretching frequencies (478 cm-1) almost identical with that without substrate (477 cm-1). These findings suggest the existence of the following physiologically important natures of the cytochrome P-450scc active site: (1) there is a strong steric interaction between heme-bound carbon monoxide and the 22(R)-hydroxyl group or the 22(R)-hydrogen of the steroid side chain and (2) the hydroxylation at the 20S position may cause a conformational change of the side-chain group relative to the heme.  相似文献   

18.
The resonance Raman spectrum of protein B2 of ribonucleotide reductase from Escherichia coli shows several features to its oxo-bridged binuclear iron center. A peak at 492 cm-1 is assigned to the symmetric stretch of the Fe-O-Fe moiety on the basis of its 13-cm-1 shift to lower energy upon 18O substitution. The 18O species shows an additional peak at 731 cm-1, which is a good candidate for the asymmetric stretch of the Fe-O-Fe moiety. Its exact location in the 16O species is obscured by the presence of a protein tryptophan vibration at 758 cm-1. A third resonance-enhanced peak at 598 cm-1 is identified as an Fe-OH vibration on the basis of its 24-cm-1 shift to lower energy in H2 18O, its 2-cm-1 shift to lower energy in D2O, and its pH-dependent intensity. A hydrogen-bonded mu-oxo bridge similar to that in hemerythrin is suggested by the unusually low frequency for the Fe-O-Fe symmetric stretch and the 3-cm-1 shift to higher energy of vs(Fe-O-Fe) in D2O. From the oxygen isotope dependence of vs(Fe-O-Fe), an Fe-O-Fe angle of 138 degrees can be calculated. This small angle suggests that the iron center consists of a tribridged core as in hemerythrin. A model for the binuclear iron center of ribonucleotide reductase is presented in which the hydroxide ligand sites provide an explanation for the half-of-sites reactivity of the enzyme.  相似文献   

19.
Uchida T  Mogi T  Kitagawa T 《Biochemistry》2000,39(22):6669-6678
Cytochrome bo from Escherichia coli, a member of the heme-copper terminal oxidase superfamily, physiologically catalyzes reduction of O(2) by quinols and simultaneously translocates protons across the cytoplasmic membrane. The reaction of its ferric pulsed form with hydrogen peroxide was investigated with steady-state resonance Raman spectroscopy using a homemade microcirculating system. Three oxygen-isotope-sensitive Raman bands were observed at 805/X, 783/753, and (767)/730 cm(-)(1) for intermediates derived from H(2)(16)O(2)/H(2)(18)O(2). The experiments using H(2)(16)O(18)O yielded no new bands, indicating that all the bands arose from the Fe=O stretching (nu(Fe)(=)(O)) mode. Among them, the intensity of the 805/X cm(-)(1) pair increased at higher pH, and the species giving rise to this band seemed to correspond to the P intermediate of bovine cytochrome c oxidase (CcO) on the basis of the reported fact that the P intermediate of cytochrome bo appeared prior to the formation of the F species at higher pH. For this intermediate, a Raman band assignable to the C-O stretching mode of a tyrosyl radical was deduced at 1489 cm(-)(1) from difference spectra. This suggests that the P intermediate of cytochrome bo contains an Fe(IV)=O heme and a tyrosyl radical like compound I of prostaglandin H synthase. The 783/753 cm(-)(1) pair, which was dominant at neutral pH and close to the nu(Fe)(=)(O) frequency of the oxoferryl intermediate of CcO, presumably arises from the F intermediate. On the contrary, the (767)/730 cm(-)(1) species has no counterpart in CcO. Its presence may support the branched reaction scheme proposed previously for O(2) reduction by cytochrome bo.  相似文献   

20.
Resonance Raman spectroscopy has been used to probe the structure of the covalently bound quinone cofactor in methylamine dehydrogenase from the bacterium W3A1. Spectra were obtained on the phenylhydrazine and 2-pyridylhydrazine derivatives of the native enzyme, on the quinone-containing subunit labeled with phenylhydrazine, and on an active-site peptide also labeled with phenylhydrazine. Comparisons of these spectra to the corresponding spectra of copper-containing amine oxidase derivatives indicate that the quinones in these two classes of quinoproteins are not identical. The resonance Raman spectra of the native enzyme and small subunit have also been measured. 16O/18O exchange permitted the carbonyl modes of the quinone to be identified in the resonance Raman spectrum of oxidized methylamine dehydrogenase: a band at 1614 cm-1, together with a shoulder at 1630 cm-1, are assigned as modes containing substantial C = O stretching character. D2O/H2O exchange has pronounced effects on the resonance Raman spectrum of the oxidized enzyme, suggesting that the quinone may have numerous hydrogen bonds to the protein or that it is unusually sensitive to the local environment. Resonance Raman spectra of the isolated small subunit, and its phenylhydrazine derivative, are considerably different from the corresponding spectra of the intact protein. An attractive explanation for these observations is that the quinone cofactor in methylamine dehydrogenase from W3A1 is located at the interface between the large and small subunits, as found for the enzyme from Thiobacillus versutus [Vellieux, F. M. D., Huitema, F., Groendijk, H., Kalk, K. H., Frank, J. Jzn., Jongejan, J. A., & Duine, J. A. (1989) EMBO J. 8, 2171-2178].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号