首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The contribution of bacteria to total primary production was estimated in Big Soda Lake and related to vertical profiles of biomass and various physical and chemical properties. The purple sulfur bacteriaThiocapsa sp. was responsible for 25% of the total primary production. Bacteriochlorophyll (BChl) distribution and DCMU sensitivity experiments confirmed this bacterial activity. High concentrations of photosynthetically inactive phytoplankton were detected in anaerobic-low redox water and were attributed to an early season algal bloom that had settled into a zone of maximal viscosity. Nutrient enrichment bioassay experiments indicated that iron was the most important nutrient controlling early season algal growth.  相似文献   

2.
The increase in human development in the downstream portion of the Pyramid Lake drainage basin has resulted in increased nutrient loading to the lake. Since this is a deep, terminal lake, concern over nutrient build up and change in trophic status exists. On the basis of lake chemistry which shows consistently high concentrations of total reactive-P (mean = 55 µg P l–1) relative to dissolved inorganic-N (DIN) (mean = 15 µg N 1–1), it has been hypothesized that Pyramid is N-limited. However, no systematic study of nutrient limitation had been undertaken. Nutrient enrichment bioassays conducted throughout an entire year clearly showed that additions of DIN resulted in a 350–600% stimulation of chlorophyll production. Phosphate, when added singly or in combination with DIN, had no effect. This positive response to N-addition was significant at all times of the year except, (1) immediately after complete lake mixing in February when a large pool of hypolimnetic nitrate was injected into the euphotic zone, and (2) during a fall bloom of the nitrogen fixing species Nodularia spumigena. The positive response to N-addition in the bioassay experiments was strong between March and November. However, the seston exhibited only a gradual depletion of nitrogen relative to carbon over this same period. PN:PC ratios suggested no N-deficiency in phytoplankton biomass in February, March and April, moderate N-deficiency in May, June and July and, severe N-deficiency from August until winter turnover. The appearance of nitrogen fixing blue-green algae in September supports the hypothesis of N-limitation in the summer-autumn. In evaluating the nutrient status of a lake, the concepts of nutrient stimulation versus nutrient deficiency versus nutrient limitation must clearly be defined.This paper is dedicated to G. Evelyn Hutchinson who first visited Pyramid Lake in 1933.  相似文献   

3.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February–March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 107 cells/ml in summer and 106 cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every 5 cm. A 5-cm-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 × 108 cells/ml. Their number in winter was 3 × 105 cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 × 102 cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

4.
M. D. Burch 《Hydrobiologia》1988,165(1):59-75
The annual cycle of phytoplankton in saline, meromictic Ace Lake (68°2S.4S, 78°11.1E) in the Vestfold Hills, Antarctica, was studied from January, 1979 to January 1980. Ace Lake has permanent gradients of temperature, salinity, dissolved oxygen, and hydrogen sulphide, and is ice covered with up to 2 m of ice for 10–12 months each year. The phytoplankton community had low diversity, consisting of only four species, all flagellates — a prasinophyte Pyramimonas gelidicola McFadden et al., a cryptophyte of the genus Cryptomonas; an unidentified colourless microflagellate, and an unarmoured dinoflagellate. These were restricted to the oxic zone of the lake from the surface to 10 m.The phytoplankton had a cycle of seven months of active growth over spring and summer. Low numbers of cells survived in the water column over winter. Spring growth was initiated below the ice by increased light penetration through the ice into the lake, enhanced at the time by the removal of surface snow which accumulated on the ice over winter. Peak phytoplankton biomass production was by the shade adapted P. gelidicola and occurred at the interface of the oxic and anoxic zones where substantial available nitrogen as ammonia is found.The three dominant phytoplankton species displayed distinct vertical stratification over the oxic zone. This stratification was not static and developed over spring as the flagellates migrated to preferred light climate zones. Mean cell volume of two of the flagellates varied significantly over the year. Minimum volumes were recorded in winter and volume increased progressively over spring to reach maximum mean cell volume in summer. Mean cell volume was positively correlated with light intensity (maximum ambient PAR at the respective depth for date of sample). Low cell volume in winter may be related to winter utilization of carbohydrate reserves by slow respiration, and may represent a survival mechanism.  相似文献   

5.
Walker Lake, a large terminal lake in west-central Nevada, is rapidly desiccating and becoming more saline. From 1937 to 1977, total dissolved solids increased from 5 650 to 10 650 mg l–1. Ionically, the lake is a chlorocarbonate one; however, as desiccation continues it should eventually have about equal amounts of chloride, sulfate and carbonate. With regard to algal nutrients, the lake appears to be nitrogen limited. The phytoplankton is currently dominated by Nodularia spumigena; at times this produces noxious blooms. The zooplankton community is depauperate and composed of three species. The fish fauna is limited to three endemic fishes, with tui chub, Gila bicolor, dominant. Lahontan cutthroat trout, Salmo clarki henshawi, is restricted during summer to a narrow mid-water zone low enough in temperature and high enough in dissolved oxygen to meet physiological requirements.Dr. Koch passed away in October 1983.  相似文献   

6.
Thirteen meromictic lakes and two permanently stratified fjords in the Vestfold Hills, Antarctica, were surveyed in 1983 for photosynthetic bacteria. Burton Lake and Ellis Fjord were sampled throughout the year to determine seasonal variations. Physical and chemical parameters were recorded and related to the species present. The dominant species in waters with salinities of 100.7 g kg–1 were Chlorobium vibrioforme and Chlorobium limicola with populations at the O2–H2S interface in the range 0.3 to 6.7 × 106 ml–1. Neither of these species was found at higher salinities. Thiocapsa roseopersicina and a Chromatium sp. were found in low numbers (< 105 ml–1) in most of the same waters as the Chlorobium spp. These bacterial phototrophs developed in a narrow band below the O2–H2S interface where both light and H2S were available. Very low numbers (< 102 ml–1) of Rhodopseudomonas palustris were found in both oxic and anoxic waters having salinity 148 g kg–1. The dominance of the Chlorobium spp. is ascribed to their more efficient maintenance metabolism during the darkness, their faster growth at low light intensities (< 1 µE m–2 s–1) and the lack of selective filtering of incident light. The Chlorobium spp. grew well at –2 °C, but not –5°C in hypersaline waters. The concentration of H2S had no apparent effect on the development of the bacterial flora. Viable cells were found to depths of 100 m in Ellis Fjord indicating that viability in total darkness could have been maintained for periods of the order of 1700 days.  相似文献   

7.
An anaerobic phototrophic bacterial community in Lake Mogilnoe, a relict lake on Kil'din Island in the Barents Sea, was studied in June 1999 and September 2001. Irrespective of the season, the upper layer of the anaerobic zone of this lake had a specific species composition of sulfur phototrophic bacteria, which were dominated by the brown-colored green sulfur bacterium Chlorobium phaeovibrioides. The maximum number of sulfur phototrophic bacteria was observed in June 1999 at a depth of 9 m, which corresponded to a concentration of bacteriochlorophyll (Bchl) e equal to 4.6 mg/l. In September 2001, the maximum concentration of this pigment (3.4 mg/l) was found at a depth of 10 m. In both seasons, the concentration of Bchl a did not exceed 3 μg/l. Purple sulfur bacteria were low in number, which can be explained by their poor adaptation to the hydrochemical and optical conditions of the Lake Mogilnoe water. In June 1999, the water contained a considerable number of Pelodictyon phaeum microcolonies and Prosthecochloris phaeoasteroides cell chains, which was not the case in September 2001. A 16S rDNA-based phylogenetic analysis of pure cultures of phototrophic bacteria isolated from the lake water confirmed that the bacterial community is dominated by Chl. phaeovibrioides and showed the presence of three minor species, Thiocystis gelatinosa, Thiocapsa sp., and Thiorhodococcus sp., the last of which is specific to Lake Mogilnoe.  相似文献   

8.
Some aspects of the paleoproductivity of meromictic Crawford Lake, near Toronto, are inferred from a study of its sedimentary pigments, and diatoms. Several stages of lake development are observed over the 35 cm-deep sediment core removed from the center of Crawford Lake. Evidence of changes in lake productivity during the last 300 years was reflected by significant stratigraphic sediment pigment changes which were associated with European settlement in the Crawford Lake watershed and recent alterations associated with the area's operation by the Conservation Authority (1969 — present). One of the most important factors correlated with paleoproductivity was land clearance (mainly logging of white oak and pine). Deforestation during the last century is correlated with an increase in the amount of algal pigments deposited in the lake's sediments during the 1800's. During the last 10 years a striking increase in the accumulation of chlorophyll derivatives was observed. This is correlated with a dramatic increase in the number of visitors to the lake.Stratigraphic changes in the ratio of cyanobacterial to phototrophic bacterial pigment accumulation are used to infer changes which occurred during the shift from mesotrophy to eutrophy in Crawford Lake.  相似文献   

9.
Fuente de Piedra saline lake is located in an endorheic basin in the south of Spain. This lake is very shallow (0.5 m max. depth during 1987–88) and relatively large (± 1350 ha). It is a temporary playa lake, showing irregular cycles, with frequent seasonal drought and a high degree of unpredictability. The lake was sampled monthly during a relatively rainy year (1987–88, 10.5 months permanence). The result of combined analyses for environmental variables (salinity, temperature and soluble inorganic forms of nitrogen and phosphorus), variables related to biological activity (chlorophyll a, sediment organic matter and redox potential) and the direct analysis of the planktonic community, shows the existence of two periods of dominance by autotrophs. The first occurs during winter, exhibits a progressively higher surface to volume ratio for phytoplankton and is followed in the spring by high zooplankton densities (Moina salina, Fabrea salina) and very low phytoplankton densities, suggesting the existence of a period with a detritus-based food web. The summer period coincides with a community better adapted to high salinities that is dominated by Dunaliella salina, D. viridis, diatoms and the ciliate Fabrea salina, and associated with high ammonium concentrations. A new period of organic matter accumulation could be facilitated, in the last moments before the lake dries, by a progressive decrease in zooplankton abundance.  相似文献   

10.
Kelley  R. H.  Jack  J. D. 《Hydrobiologia》2002,482(1-3):41-47
Litter decomposition in temporary aquatic environments has not been experimentally studied as much as it has in perennial systems. However, litter is likely a critical resource for organisms inhabiting ephemeral aquatic habitats. In this study, we used litterbags under different conditions of submergence and water physical and chemical properties/characteristics to study mass and nutrient losses of terrestrial materials in an ephemeral karst lake in south-central Kentucky (USA). In the first experiment, which was designed to compare decomposition rates in submerged and dry sites, total mass and carbon declined more rapidly in the litter at fully submerged sites than in dry sites. In the second experiment, which was designed to compare decomposition rates in two different submerged environments, total mass and carbon showed similar decomposition trends between the two submerged areas with different seasonal temperature patterns. Nitrogen patterns were variable but in general nitrogen levels increased in the litter in both experiments over a period of several months. These results are similar to those found in some perennially inundated systems and indicate that litter decomposition dynamics in this temporary lake can be greatly affected by lake hydrology. Year-to-year variations in hydrology may thus have strong impacts on nutrient and energy release within this system, which may affect the organisms within this karst lake and in other areas of the karst ecosystem that are ecologically connected to it.  相似文献   

11.
The biogeochemical and molecular biological study of the chemocline and sediments of saline meromictic lakes Shira and Shunet (Khakasia, Russia) was performed. A marked increase in the rates of sulfate reduction and methanogenesis was revealed at the medium depths of the chemocline. The rates of these processes in the bottom sediments decreased with depth. The numbers of the members of domains Bacteria, Archaea, and of sulfate-reducing bacteria (SRB) were determined by fluorescence in situ hybridization with rRNA specific oligonucleotide probes labeled with horseradish peroxidase and subsequent tyramide signal amplification. In the chemocline, both the total microbial numbers and those of Bacteria were shown to increase with depth. The archaea and SRB were present in almost equal numbers. In the lake sediments, a drastic decrease in microbial numbers with depth was revealed. SRB were found to prevail in the upper sediment layer and archaea in the lower one. This finding correlated with the measured rates of sulfate reduction and methanogenesis.  相似文献   

12.
Measurements at Lake, Calaita, a small mountain lake located at 1605 m. a.s .l. in a metamorphic catchment area in the south of the Trentino Region (Northern Italy), have revealed great seasonal variations in the chemical characteristics and phytoplankton community during the ice free period in 1992 and 1993. The acidity present in wet precipitations (H+, NH4+) was neutralised within the drainage basin by mineral dissolution which led to an increase of basic cations and alkalinity in the runoff. The dilution during periods of higher discharge, e.g. in spring and autumn, resulted in low values of alkalinity (up to 60 μeq 1−1), pH (mostly <6.7) and conductivity (<8 μS cm−1, 20°C). In summer, the decrease in runoff caused higher alkalinity (>10 μeq 1−1), pH (6.9–7.4) and conductivity values (up to 30 μS cm−1). The phytoplankton showed a major development in summer (with biovolume values of up to 7000 mm3 m−3), two different taxa being dominant in 1992 (Oocystis cf. lacustris) and 1993 (Synedra sp.). Unpredictable climatic conditions have a strong influence on the physical stability of the lake, which makes it more difficult to explain the evolution of the phytoplankton community as opposed to deeper lakes.  相似文献   

13.
A floristic list of 89 freshwater phytoplanktonic algae occurring in two neighbouring, dystrophic, meromictic Tasmanian lakes is given. In both lakes the preponderance of desmids and phytoflagellates, especially chrysophytes, is a characteristic in keeping with their dystrophic nature. All the alga must be adapted to low levels of red light and some habitually inhabit crepuscular depths rather than executing diel vertical migrations such as happens in many dystrophic waters. Floristic differences between the two lakes are related to morphometric differences and the degree of entrainment of tychoplankton. The photosynthetic biomass of both lakes is predominantly monimolimnetic, made up of few species. The floristically-rich mixolimnion contributes little to biomass. The ecology of the dystrophic flora is discussed in relation to the special circumstances of meromixis.  相似文献   

14.
Nutrient addition experiments conducted during the ice-free seasons of 1983 and 1984 in Gem Lake, an alpine lake in the Sierra Nevada mountains of California, indicate that algal biomass is limited by phosphorus, in combination with iron or copper. Phosphorus additions were always required to stimulate growth, but did not do so when phosphorus was the only nutrient added. Simultaneous additions of phosphorus and iron resulted in increased levels of chlorophyll, particulate carbon, particulate nitrogen and particulate phosphorus. Simultaneous additions of phosphorus and copper resulted in increases in chlorophyll, particulate nitrogen and particulate phosphorus, not in particulate carbon. Neither iron nor copper by itself stimulated growth.Particulate N : P ratios from all seasons in Gem Lake suggest that simultaneous micronutrient and phosphorus limitation exists throughout the summer, when nutrient and biomass levels remain low; limitation by phosphorus alone may appear in the fall and spring, when biomass and major ion concentrations increase dramatically.  相似文献   

15.
The anoxygenic phototrophic bacterial community of the high-altitude meromictic Lake Gek-Gel (Azerbaijan) was investigated in September 2003. The highest concentration of bacteriochlorophyll e (48 μg/l) was detected at a depth of 30 m; the peak of bacteriochlorophyll a (4.5 μg/l) occurred at 29 m. Phylogenetic analysis revealed that brown-colored green sulfur bacteria Chlorobium phaeobacteroides predominated in the lake. Nonsulfur purple bacteria phylogenetically close to Blastochloris sulfoviridis were found in insignificant amounts; these organisms have not been previously reported in Lake Gek-Gel.  相似文献   

16.
Fuente de Piedra is a shallow, temporary saline lake whoseseasonal behavior is strongly dependent on the annual hydrologicalbudget. In this study, we outline the characteristics of Fuente dePiedra Lake for two years that had different hydrological budgets.The high precipitations in 1989–90 caused the lake not to dry asusual, and decreased both salinity and the amplitude of changes.There were also differences in nutrient dynamics, with generallylower concentrations of soluble reactive phosphorus and ammonium,whereas in the more humid year nitrate showed a distinct maximum inwinter. Winter bloom chlorophyll a concentrations were alsomuch higher in 1989–90 (>600 g l-1) but there wasalso a winter productive phase that was presumably poorly coupledwith consumption processes that predominate in spring. Planktonicassemblages were different between years. Highly halotolerantphytoplankton species (Dunaliella salina and D. viridis) became scarcer, and especially two previouslyunrecorded diatoms (Cyclotella sp. and Chaetoceros sp.)became dominant in the bloom time in the wet year. The speciesrichness of the zooplankton increased in the wet year, with newspecies appearing that were not collected during 1987–88(Branchinectella media, Daphnia mediterranea, Macrothrix sp.,Arctodiaptomus salinus, Cyclops sp., Sigara sp...).There was also a much higher development of macrophytes (Ruppiadrepanensis, Althenia orientalis, Lamprothamnium papulosum)and bird populations, especially flamingoes (Phoenicopterusruber).Important interannual variations in this sort of system pointto the need for long term studies to observe the whole range ofstates that define the lake as an entity.  相似文献   

17.
Periphyton nutrient limitation was assessed in Lake Okeechobee, a large, shallow, eutrophic lake in the southeastern U.S.A. Nutrient assays were performed to determine if the same nutrients that limit phytoplankton also limit periphyton growth in the lake. Nutrient diffusing clay substrates containing agar spiked with nitrogen, phosphorus, or both, along with nutrient-free controls, were incubated at four sites in the lake. Three sites were located in a pelagic–littoral interface (ecotone) and one site was located in the interior littoral region. Incubations lasted for 20–26 days, and were repeated on a quarterly basis between 1996 and 1997, to incorporate seasonal variability into the experimental design. The physical and chemical conditions at each site also were measured. Periphyton biomass (chlorophyll a and ash-free dry mass) was highest at the littoral and northern ecotone sites. At the littoral site, nitrogen limited biomass in four of five incubations, although the largest biomass differences between the treatments and controls (3 g cm–2 as chl) were probably not ecologically significant. Periphyton biomass at the western and southern ecotone sites was low compared to the other two sites. Increases in water column depth and associated declines in light penetration strongly correlated with periphyton growth and suggested that they may have limited growth most often at all three ecotone sites. Nitrogen also was found to limit periphyton growth approximately 20% of the time at the ecotone sites and phosphorus was found to limit growth once at the west site.  相似文献   

18.
Seasonal and annual variation in biomass and structure of algal assemblages of hyposaline Devils Lake were examined in relation to turbidity, ambient concentrations of major ions, trace elements and nutrients, and the standing crop of herbivores. Lake level declined during the early years of study, but rose markedly in subsequent years as historically large volumes of water flowed into this hydrologically-closed basin. Winter algal assemblages were dominated (in biomass) most years by small, non-motile chlorophytes ( Choricystis minor, Kirchneriella lunaris or Dunaliella sp.), or Euglena sp. in the most saline sub-basin. Spring assemblages were dominated by diatoms (Stephanodiscus cf. minutulus, Surirella peisonis, Cyclotella meneghiniana and Entomoneis paludosa were especially prominent) or chlorophytes ( C. minor) until the lake level rose. C. minor abundances then declined in spring assemblages and diatoms ( Stephanodiscus cf. agassizensis and S. niagarae; E. paludosa in the more saline sub-basins) dominated. The potential for nitrogen-deficient conditions for phytoplankton growth was evidenced most summers and early autumns by consistently high concentrations of reactive-P relative to inorganic-N and blooms of the N-fixing cyanophyte Aphanizomenon flos-aquae; Microcystis aeruginosa typically was a co-dominant (>30% of biomass) in these assemblages. Pulses of diatoms ( S. cf. agassizensis and C. meneghiniana) occurred in summers following unusually prolonged periods of calm weather or large water inflows. Physical (irradiance, turbulence) and chemical (major nutrients) variables were the primary factors associated with phytoplankton growth. Transparency and major nutrient concentrations accounted for more of the annual variation in phytoplankton structure than did salinity. Seasonal abundance patterns of the dominant zooplankton (the copepod Diaptomus sicilis; the cladocerans Ceriodaphnia quadrangula, Chydorus sphaericus, Daphnia pulex and Diaphanosoma birgei; and the rotifers Brachionus spp., Filinia longiseta, Keratella cochlearis and K. quadrata) also indicated variation in algal populations related to grazing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
An integrative study of a meromictic lake ecosystem in Antarctica   总被引:1,自引:0,他引:1  
In nature, the complexity and structure of microbial communities varies widely, ranging from a few species to thousands of species, and from highly structured to highly unstructured communities. Here, we describe the identity and functional capacity of microbial populations within distinct layers of a pristine, marine-derived, meromictic (stratified) lake (Ace Lake) in Antarctica. Nine million open reading frames were analyzed, representing microbial samples taken from six depths of the lake size fractionated on sequential 3.0, 0.8 and 0.1 μm filters, and including metaproteome data from matching 0.1 μm filters. We determine how the interactions of members of this highly structured and moderately complex community define the biogeochemical fluxes throughout the entire lake. Our view is that the health of this delicate ecosystem is dictated by the effects of the polar light cycle on the dominant role of green sulfur bacteria in primary production and nutrient cycling, and the influence of viruses/phage and phage resistance on the cooperation between members of the microbial community right throughout the lake. To test our assertions, and develop a framework applicable to other microbially driven ecosystems, we developed a mathematical model that describes how cooperation within a microbial system is impacted by periodic fluctuations in environmental parameters on key populations of microorganisms. Our study reveals a mutualistic structure within the microbial community throughout the lake that has arisen as the result of mechanistic interactions between the physico-chemical parameters and the selection of individual members of the community. By exhaustively describing and modelling interactions in Ace Lake, we have developed an approach that may be applicable to learning how environmental perturbations affect the microbial dynamics in more complex aquatic systems.  相似文献   

20.
The species composition and phytoplankton biomass of Lake Awassa, Ethiopia were studied from September 1985 to July 1986 in relation to some limnological features of the lake. During the study period, three phases of thermal stratification were recognized: a period of unstable stratification and near-complete mixing was followed by a stable stratification period and another period of complete mixing. Complete mixing was associated with cooling of air temperature with an influx of cool rain and high rainfall. The underwater light penetration showed a similar pattern over the whole period with the highest in the red, and the lowest in the blue spectral region. Euphotic depth varied between 1.6 and 3.0 meters with the highest measurements corresponding to the stable stratification period. PO4-P concentrations ranged between 23 and 45 µg l–1 and NO3-N concentrations varied between 7 and 14 µg l–1 during the study period. Both nutrients showed increasing values associated with mixing periods and/or the rainy season.A total of 100 phytoplankton species were identified with 48% of the taxa represented by green algae, 30% by blue-green algae, 11% by diatoms, and the rest by chrysophytes, dinoflagellates, cryptomonads and euglenoids. The dominant phytoplankton species were Lyngbya nyassae, Botryococcus braunii and Microcystis species. Seasonal biomass variation was pronounced in the first two species but not in Mycrocystis. Phytoplankton biomass increased following the mixing period in December, and thermal destratification during May to July which was also a period with high rainfall and relatively high nutrient concentration. While the seasonal variation of the total phytoplankton community in Lake Awassa was relatively low (coefficient of variation < 20%), it was higher in some of the individual component species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号