首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron (Fe), copper (Cu), and zinc (Zn) fulfill various essential biological functions and are vital for all living organisms. They play important roles in oxygen transport, cell growth and differentiation, neurotransmitter synthesis, myelination, and synaptic transmission. Because of their role in many critical functions, they are commonly used in food fortification and supplementation strategies globally. To determine the involvement of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) on Fe, Cu, and Zn uptake, Caco-2 cells were transfected with four different shRNA plasmids to selectively inhibit DMT1 or hCTR1 transporter expression. Fe and Cu uptake and total Zn content measurements were performed in shRNA-DMT1 and shRNA-hCTR1 cells. Both shRNA-DMT1 and shRNA-hCTR1 cells had lower apical Fe uptake (a decrease of 51% and 41%, respectively), Cu uptake (a decrease of 25.8% and 38.5%, respectively), and Zn content (a decrease of 23.1% and 22.7%, respectively) compared to control cells. These results confirm that DMT1 is involved in active transport of Fe, Cu, and Zn although Zn showed a different relative capacity. These results also show that hCTR1 is able to transport Fe and Zn.  相似文献   

2.
3.
Copper transporter 1 (CTR1) is a transmembrane protein that imports copper(i) into yeast and mammalian cells. Surprisingly, the protein also mediates the uptake of platinum anticancer drugs, e.g. cisplatin and carboplatin. To study the effects of several metal-binding residues/motifs of hCTR1 on the transport of both Cu(+) and cisplatin, we have constructed Hela cells that stably express a series of hCTR1 variant proteins including H22-24A, NHA, C189S, hCTR1ΔC, H139R and Y156A, and compared their abilities to regulate the accumulation and cytotoxicity of these metal compounds. Our results demonstrated that the cells expressing the hCTR1 mutants of histidine-rich motifs in the N-terminus (H22-24A, NHA) resulted in a higher basal copper level in the steady state compared to those expressing wild-type protein. However, the cellular accumulation of both copper and cisplatin in these variants was found at a similar level to that of wild type when incubated with an excess of metal compounds (100 μM). The cells expressing hCTR1 variants of H139R and Y156A exhibit lower capacities towards accumulation of copper but not cisplatin. Significantly, cells with the C189S variant partially retained the ability of the wild-type hCTR1 protein to accumulate both copper and cisplatin, while for cells expressing the C-terminus truncated variant of hCTR1 (hCTR1ΔC) this ability was absolutely abolished, suggesting that this motif is crucial for the function of the transporter.  相似文献   

4.
Copper is an essential co-factor in many important physiological processes, but at elevated levels it is toxic to cells. Thus at both the organism and cellular level mechanisms have evolved to finely tune copper homeostasis. The protein responsible for copper entry from the circulation in most human cells is hCTR1, a small protein (190 amino acid residues) that functions as a trimer in the plasma membrane. In the present work we employ cell surface biotinylation and isotopic copper uptake studies of overexpressed hCTR1 in HEK293 cells to examine the acute (minutes) response of hCTR1 to changes in extracellular copper. We show that within 10 min of exposure to copper at 2.5 μm or higher, plasma membrane hCTR1 levels are reduced (by ∼40%), with a concomitant reduction in copper uptake rates. We are unable to detect any degradation of internalized hCTR1 in the presence of cycloheximide after up to 2 h of exposure to 0–100 μm copper. Using a reversible biotinylation assay, we quantified internalized hCTR1, which increased upon the addition of copper and corresponded to the hCTR1 lost from the surface. In addition, when extracellular copper is then removed, internalized hCTR1 is promptly (within 30 min) recycled to the plasma membrane. We have shown that in the absence of added extracellular copper, there is a small but detectable amount of internalized hCTR1 that is increased in the presence of copper. Similar studies on endogenous hCTR1 show a cell-specific response to elevated extracellular copper. Copper-dependent internalization and recycling of hCTR1 provides an acute and reversible mechanism for the regulation of cellular copper entry.Copper is an essential micronutrient and plays an important function as a co-factor for a number of cellular processes including oxidative phosphorylation, free radical detoxification, neurotransmitter synthesis, iron metabolism, and maturation of connective tissue (1). Copper in excess of cellular requirements is toxic; therefore cells have developed sophisticated mechanisms for regulating copper acquisition and secretion, thus maintaining a critical copper homeostasis (2, 3). In eukaryotes a family of transporters known as the copper transporter (Ctr) proteins mediate cellular copper uptake (4). Ctr proteins are integral membrane proteins that are structurally conserved with three membrane-spanning domains and a number of methionine rich motifs in the N terminus (5). They contain a sequence of conserved cysteine and histidine residues at or close to the C terminus and are predominantly located at the plasma membrane (6). In the yeast, Saccharomyces cerevisiae, the first high affinity copper transporters, yCtr1 and yCtr3, were identified (7, 8), and this facilitated the identification of the human copper transporter gene, hCTR1,2 by functional complementation of yeast high affinity copper uptake mutant, ctr1 (9). The mouse CTR1 is 92% identical to hCTR1 (10), and the deletion of mCTR1 results in early embryonic lethality, suggesting an essential role for the high affinity copper transporter in mammalian growth and development (11).hCTR1 has 190 amino acid residues, three membrane-spanning domains, an extracellular N terminus (of 66 amino acids), a large cytoplasmic loop (of 46 amino acid residues), and a short C-terminal tail (of 15 amino acids) and has been shown to form stable dimers and trimers (1214). The hCTR1 protein has been shown in 64Cu uptake experiments to mediate copper transport with a Km of 1–5 μm and is thought to transport the reduced form, Cu(I) (12, 13, 15). The extracellular N terminus has both N- and O-linked glycosylation at residues Asn15 and Thr27, respectively (12, 16, 17), and contains two histidine-rich regions and two methionine motifs that are thought to function in copper binding/sensing. Recent studies showed that mutation or deletion of the methionine residues closest to the first transmembrane domain (Met43 and Met45) and the conserved methionine residues in the second transmembrane domain (Met150 and Met154) had a large inhibitory effect on 64Cu uptake (18, 19). Mutational analysis provided no evidence for the tight binding of copper at any specific residues, and it was proposed that hCTR1 provided a pore for the permeation of copper across the membrane (18). Structural confirmation of such a mechanism was provided in the low resolution structure obtained by cryo-electron microscopy studies on recombinant protein (20, 21).Considerable progress has been made in understanding the biochemical, structure-functional, and molecular aspects of hCTR1-mediated copper transport, although many questions remain unanswered (22). It is also important to determine whether or not hCTR1 has a regulatory role preventing the accumulation of toxic levels of copper and maintaining cellular copper homeostasis. Previous reports on whether or not hCTR1 is involved in an acute response to elevated copper have been somewhat controversial. It has been reported that elevated extracellular copper (1–100 μm) stimulates rapid endocytosis and degradation of hCTR1-Myc-tagged protein in HEK293 cells (23), but also high copper levels had no effect on endogenous hCTR1 localization in both HeLa and Caco-2 cells (14). In a study of overexpressed hCTR1 in insect cells, no evidence was seen of internalization in response to elevated copper (24). Imaging studies have shown that the cellular location of hCTR1 varies among cell lines, CTR1 in MDCK and HEK293 cells resides mainly at the plasma membrane (13, 15, 23, 24). Endogenous hCTR1 is located in cytoplasmic vesicular compartments in HeLa, Caco-2, and HepG2 cell lines with some plasma membrane staining in Caco-2 (14). In intestinal sections, basolateral and subapical staining is seen (15).Previous studies (see above) have utilized internalization of prebound antibody (23) or imaging methods (14) to characterize the response of hCTR1 to elevated copper. In the present work we employed HEK cells overexpressing hCTR1 and used cell surface biotinylation, a sensitive and quantitative measure of CTR1 at the cell surface (15, 17). We have combined this with measurements of hCTR1-mediated 64Cu uptake as a functional measure of plasma membrane hCTR1 levels. We find that a fraction (∼40%) of hCTR1 is rapidly internalized in the presence of elevated copper and that there is a concomitant reduction in the hCTR1-mediated copper uptake rate. The internalized transporter is not degraded and can be detected in the cytosol. On removal of extracellular copper, the transporter is recycled promptly to the plasma membrane. Internalization of endogenous CTR1 is also observed in MDCK and HepG2 cells, and no reduction is seen in T47D cells. This is, to our knowledge, the first such report of copper-dependent recycling of hCTR1 in response to copper and represents an acute regulatory mechanism that reversibly modulates cellular copper entry.  相似文献   

5.
We have expressed hCTR1, the human copper transporter, in Sf9 cells using a baculovirus-mediated expression system, and we observed greatly enhanced copper uptake. Western blots showed that the protein is delivered to the plasma membrane, where it mediates saturable copper uptake with a K(m) of approximately 3.5 microm. We also expressed functional transporters where the N-linked glycosylation sites were substituted, and we provided evidence for the extracellular location of the amino terminus. Accessibility of amino-terminal FLAG epitope to antibody prior to permeabilization and of carboxyl-terminal FLAG only after permeabilization confirmed the extracellular location of the amino terminus and established the intracellular location of the carboxyl terminus. Tryptic digestion of hCTR1 occurred within the cytoplasmic loop and generated a 10-Da carboxyl-terminal peptide; cleavage was prevented by the presence of copper. hCTR1 mutants where Cys-161 and Cys-189, the two native cysteines, were replaced with serines also mediated copper uptake, indicating that neither cysteine residue was essential for transport. However, the mutants provided evidence that these residues may stabilize hCTR1 oligomerization. Western blots of hCTR1 in Sf9 cells showed expression levels 100-fold higher than in mammalian (HepG2) cells. The high level of functional expression and the low level of endogenous copper uptake will enable future structure-function analysis of this important protein.  相似文献   

6.
Membrane proteins of the CTR family mediate cellular copper uptake in all eukaryotic cells and have been shown to participate in uptake of platinum-based anticancer drugs. Despite their importance for life and the clinical treatment of malignancies, directed biochemical studies of CTR proteins have been difficult because high-resolution structural information is missing. Building on our recent 7Å structure of the human copper transporter hCTR1, we present the results of an extensive tryptophan-scanning analysis of hCTR1 and its distant relative, yeast CTR3. The comparative analysis supports our previous assignment of the transmembrane helices and shows that most functionally and structurally important residues are clustered around the threefold axis of CTR trimers or engage in helix packing interactions. The scan also identified residues that may play roles in interactions between CTR trimers and suggested that the first transmembrane helix serves as an adaptor that allows evolutionarily diverse CTRs to adopt the same overall structure. Together with previous biochemical and biophysical data, the results of the tryptophan scan are consistent with a mechanistic model in which copper transport occurs along the center of the trimer.  相似文献   

7.
Copper is essential for human growth and survival. Enterocytes mediate the absorption of dietary copper from the intestinal lumen into blood as well as utilizing copper for their biosynthetic needs. Currently, the pathways for copper entry into enterocytes remain poorly understood. We demonstrate that the basolateral copper uptake into intestinal cells greatly exceeds the apical uptake. The basolateral but not apical transport is mediated by the high affinity copper transporter hCTR1. This unanticipated conclusion is supported by cell surface biotinylation and confocal microscopy of endogenous hCTR1 in Caco2 cells as well as copper influx measurements that show saturable high affinity uptake at the basolateral but not the apical membrane. Basolateral localization of hCTR1 and polarized copper uptake are also conserved in T84 cells, models for intestinal crypt cells. The lateral localization of hCTR1 seen in intestinal cell lines is recapitulated in immunohistochemical staining of mouse intestinal sections. Biochemical and functional assays reveal the basolateral localization of hCTR1 also in renal Madin-Darby canine kidney cells and opossum kidney cells. Overexpression of hCTR1 in Madin-Darby canine kidney cells results in both apical and basolateral delivery of the overexpressed protein and greatly enhanced copper uptake at both cell surfaces. We propose a model of intestinal copper uptake in which basolateral hCTR1 plays a key role in the physiologically important delivery of copper from blood to intracellular proteins, whereas its role in the initial apical uptake of dietary copper is indirect.  相似文献   

8.
Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.  相似文献   

9.
Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using 64Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu+ first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry.  相似文献   

10.
Over a decade ago, genetic studies identified a family of small integral membrane proteins, commonly referred to as copper transporters (CTRs) that are both required and sufficient for cellular copper uptake in a yeast genetic complementation assay. We recently used electron crystallography to determine a projection density map of the human high affinity transporter hCTR1 embedded into a lipid bilayer. At 6 Å resolution, this first glimpse of the structure revealed that hCTR1 is trimeric and possesses the type of radial symmetry that traditionally has been associated with the structure of certain ion channels such as potassium or gap junction channels. Representative for this particular type of architecture, a region of low protein density at the center of the trimer is consistent with the existence of a copper permeable pore along the center three-fold axis of the trimer. In this contribution, we will briefly discuss how recent structure–function studies correlate with the projection density map, and provide a perspective with respect to the cellular uptake of other transition metals.  相似文献   

11.
12.
The major human copper uptake protein, hCTR1, has 190 amino acids and a predicted mass of 21 kDa. hCTR1 antibodies recognize multiple bands in SDS-PAGE centered at 35 kDa. Part of this increased mass is due to N-linked glycosylation at Asn-15. We show that in mammalian cells the N15Q mutant protein trafficked to the plasma membrane and mediated copper uptake at 75% of the rate of wild-type hCTR1. We demonstrate that the extracellular amino terminus of hCTR1 also contains O-linked polysaccharides. Glycosidase treatment that removed O-linked sugars reduced the apparent mass of hCTR1 or N15Q mutant protein by 1-2 kDa. Expression of amino-terminal truncations and alanine substitution mutants of hCTR1 in HEK293 and MDCK cells localized the site of O-linked glycosylation to Thr-27. Expression of alanine substitutions at Thr-27 resulted in proteolytic cleavage of hCTR1 on the carboxyl side of the T27A mutations. This cleavage produced a 17-kDa polypeptide missing approximately the first 30 amino acids of hCTR1. Expression of wild-type hCTR1 in mutant Chinese hamster ovary cells that were unable to initiate O-glycosylation also resulted in hCTR1 cleavage to produce the 17-kDa polypeptide. The 17-kDa hCTR1 polypeptide was located in the plasma membrane and mediated copper uptake at about 50% that of the rate of wild-type hCTR1. Thus, O-linked glycosylation at Thr-27 is necessary to prevent proteolytic cleavage that removes half of the extracellular amino terminus of hCTR1 and significantly impairs transport activity of the remaining polypeptide.  相似文献   

13.
14.
Human copper transporter 1 (hCTR1) is the high-affinity copper influx transporter in mammalian cells that also mediates the influx of cisplatin. Loss of hCTR1 expression has been implicated in the development of resistance to this cancer chemotherapeutic agent. It has turned out to be very difficult to develop antibodies to hCTR1 and polyclonal antibodies produced by different laboratories have yielded conflicting results. We have characterized a newly-available rabbit monoclonal antibody that reacts with an epitope on the N-terminal end of hCTR1 that now permits rigorous identification and quantification of hCTR1 using Western blot analysis. Postnuclear membrane (PNM) preparations made from cells engineered to express high levels of myc-tagged hCTR1, and cells in which the expression of hCTR1 was knocked down, were used to characterize the antibody. The identity of the bands detected was confirmed by immunoprecipitation, surface biotinylation and deglycosylation of myc-tagged hCTR1. Despite the specificity expected of a monoclonal antibody, the anti-hCTR1 detected a variety of bands in whole cell lysates (WCL), which made it difficult to quantify hCTR1. This problem was overcome by isolating post-nuclear membranes and using these for further analysis. Three bands were identified using this antibody in PNM preparations that migrated at 28, 33–35 and 62–64 kDa. Multiple lines of evidence presented here suggest that the 33–35 and 62–64 kDa bands are hCTR1 whereas the 28 kDa band is a cross-reacting protein of unknown identify. The 33–35 kDa band is consistent with the expected MW of the glycosylated hCTR1 monomer. This analysis now permits rigorous identification and quantification of hCTR1.  相似文献   

15.
16.
The mechanism of copper uptake in Saccharomyces cerevisiae has been investigated using a combination of 64Cu2+ and atomic absorption spectrophotometry. A wild type copper-resistant CUP 1R-containing strain and a strain carrying a deletion of the CUP1 locus (yeast copper metallothionein) exhibited quantitatively similar saturable energy-dependent 64Cu2+ uptake when cultures were pregrown in copper-free media (medium [Cu] approximately 15 nM). The kinetic constants for uptake by the wild type strain were Vmax = 0.21 nmol of copper/min/mg of protein and Km = 4.4 microM. This accumulation of 64Cu2+ represented net uptake as confirmed by atomic absorption spectrophotometry. This uptake was not seen in glucose-starved cells, but was supported in glycerol- and ethanol-grown ones. Uptake was inhibited by both N3- and dinitrophenol and was barely detectable in cultures at 4 degrees C. When present at 50 microM, Zn2+ and Ni2+ inhibited by 50% indicating that this uptake process was relatively selective for Cu2+. 64Cu2+ accumulation was qualitatively and quantitatively different in cultures either grown in or preincubated with cold Cu2+. Either treatment resulted in the appearance of a fast phase (t 1/2 approximately 1 min) of 64Cu2+ accumulation which represented isotopic exchange since it did not lead to an increase in the mass of cell-associated copper; also, it was not energy-dependent. Exchange of 64Cu2+ into this pool was not inhibited by Zn2+. Pretreatment with Cu2+ caused a change in the rate of net accumulation as well; a 3-h incubation of cells in 5 microM medium Cu2+ caused a 1.6-fold increase in the velocity of energy-dependent uptake. Prior addition of cycloheximide abolished this Cu2(+)-dependent increase and, in fact, inhibited the 64Cu2+ uptake velocity by greater than 85%. The exchangeable pool was also absent in cycloheximide, Cu2(+)-treated cells suggesting that exchangeable Cu2+ derived from the copper taken up initially by the energy-dependent process. The thionein deletion mutant was similar to wild type in response to medium Cu2+ and cycloheximide indicating that copper metallothionein is not directly involved in Cu2+ uptake (as distinct from retention) in yeast.  相似文献   

17.
18.
To identify novel genes that confer resistance to methylmercury (MeHg), a yeast genomic DNA library was transfected into Saccharomyces cerevisiae. Two functional plasmids were isolated from transfected yeast clones D1 and H5 that exhibited resistance to MeHg. The yeast transfected with plasmid isolated from clone H5 was several-fold more resistant than yeast transfected with plasmid from clone D1. Functional characterization of the genomic DNA fragment obtained from clone H5 determined that the GFA1 gene conferred resistance to MeHg. GFA1 was reported to encode L-glutamine:D-fructose-6-phosphate amidotransferase (GFAT) which catalyzes the synthesis of glucosamine-6-phosphate from glutamine and fructose-6-phosphate. Accumulation of mercury in yeast clone W303B/pGFA1, which contains the transfected GFA1 gene, did not differ from that in control yeast clone W303B/pYES2. The W303B/pGFA1 strain did not show resistance to mercuric chloride, zinc chloride, cadmium chloride or copper chloride, suggesting that the resistance acquired by GFA1 gene transfection might be specific to MeHg. This is the first report of a gene involved in MeHg resistance in eukaryotic cells identified by screening a DNA library.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号