首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
We previously showed that 1-[3-(3-pyridyl)-acryloyl]-2-pyrrolidinone hydrochloride (N2733) inhibits lipopolysaccharide (LPS)-induced tumour necrosis factor (TNF)-alpha secretion and improves the survival of endotoxemic mice. Since overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) in vascular smooth muscle cells (VSMCs) is largely responsible for the development of endotoxemic shock, and iNOS gene expression is mainly regulated by LPS and inflammatory cytokines, we studied whether or not N2733 affects interleukin (IL)-1beta-induced iNOS gene expression, NF-kappaB activation, and NF-kappaB inhibitor (IkappaB)-alpha degradation in cultured rat VSMCs. N2733 dose-dependently (10-100 microM) inhibited IL-1beta-stimulated NO production, and decreased IL-1beta-induced iNOS mRNA and protein expression, as found on Northern and Western blot analyses, respectively. Gel shift assay and an immunocytochemical study showed that N2733 inhibited IL-1beta-induced NF-kappaB activation and its nuclear translocation. Western blot analyses involving anti-IkappaB-alpha and anti-phospho IkappaB-alpha antibodies showed that IL-1beta induced transient degradation of IkappaB-alpha preceded by the rapid appearance of phosphorylated IkappaB-alpha, both of which were markedly blocked by N2733. N2733 blocked IL-1beta-induced phosphorylated IkappaB-alpha even in the presence of a proteasome inhibitor (MG115). Immunoblot analysis involving anti-IkappaB kinase (IKK)-alpha and anti-phosphoserine antibodies revealed that N2733 inhibited IL-1beta-induced IKK-alpha phosphorylation, whereas N2733 had no inhibitory effect on IL-1beta-stimulated p42/p44 MAP kinase or p38 MAP kinase activity. Our results suggest that the inhibitory action of N2733 toward IL-1beta-induced NF-kappaB activation and iNOS expression is due to its blockade of the upstream signal(s) leading to IKK-alpha activation, and subsequent phosphorylation and degradation of IkappaB-alpha in rat VSMCs.  相似文献   

8.
9.
10.
The influence of anisoosmolarity on NF-kappaB binding activity was studied in H4IIE rat hepatoma cells. Hypoosmolarity induced a sustained NF-kappaB binding activity whereas the hyperosmotic NF-kappaB response was only minor. Hypoosmotic NF-kappaB activation was accompanied by degradation of the inhibitory IkappaB-alpha. Protein kinase C, PI(3)-kinase, reactive oxygen intermediates and the proteasome apparently participate in mediating the hypoosmotic effect on NF-kappaB. Hypoosmolarity plus PMA induced, amplified and prolonged IkappaB-alpha degradation and NF-kappaB binding activity. Transforming growth factor beta-induced apoptosis was diminished by hypoosmolarity. However, this anti-apoptotic effect was probably not related to NF-kappaB activation.  相似文献   

11.
12.
13.
14.
As we had found previously that thapsigargin, an endomembrane Ca2+-ATPase inhibitor, induces production of intracellular platelet-activating factor (PAF) [Br. J. Pharmacol. 116 (1995) 2141], we decided to investigate the possible roles of intracellular PAF in nuclear factor (NF)-kappaB activation of thapsigargin-stimulated rat peritoneal macrophages. When rat peritoneal macrophages were stimulated with thapsigargin, the level of inhibitory protein of NF-kappaB-alpha (IkappaB-alpha) was decreased and the nuclear translocation of NF-kappaB was increased. The thapsigargin-induced activation of NF-kappaB was inhibited by the PAF synthesis inhibitor SK&F 98625 and the PAF antagonist E6123. Structurally unrelated PAF antagonists such as E5880 and L-652,731 also inhibited the thapsigargin-induced activation of NF-kappaB. Lipopolysaccharide (LPS)-induced activation of NF-kappaB was also suppressed by these drugs. In a culture of rat peritoneal macrophages, exogenously added PAF did not induce degradation of IkappaB-alpha. These findings suggest that the intracellular PAF produced by the stimulation with thapsigargin or LPS is involved in activation of the NF-kappaB pathway.  相似文献   

15.
16.
17.
18.
19.
20.
Reduction-oxidation (redox) state constitutes such a potential signaling mechanism for the regulation of an inflammatory signal associated with oxidative stress. Exposure of alveolar epithelial cells to ascending DeltapO(2) regimen+/-reactive oxygen species (ROS)-generating systems induced a dose-dependent release of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha. Similarly, the Escherichia coli-derived lipopolysaccharide-endotoxin (LPS) up-regulated cytokine biosynthesis in a dose- and time-dependent manner. Irreversible inhibition of gamma-glutamylcysteine synthetase, the rate-limiting enzyme in the biosynthesis of glutathione (GSH), by L-buthionine-(S,R)-sulfoximine (BSO), induced the accumulation of ROS and augmented DeltapO(2) and LPS-mediated release of cytokines. Analysis of the molecular mechanism implicated revealed an inhibitory-kappaB (IkappaB-alpha)/nuclear factor-kappaB (NF-kappaB)-independent pathway in mediating redox-dependent regulation of inflammatory cytokines. BSO stabilized cytosolic IkappaB-alpha and down-regulated its phosphorylation, thereby blockading NF-kappaB activation, yet it augmented cytokine secretion. Glutathione depletion is associated with the augmentation of oxidative stress-mediated inflammatory state in a ROS-dependent mechanism and the IkappaB-alpha/NF-kappaB pathway is redox-sensitive but differentially involved in regulating redox-dependent regulation of cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号