首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
P D Adams  P J Parker 《FEBS letters》1991,290(1-2):77-82
Threonine and tyrosine residue phosphorylation of a 42 kDa protein identified as mitogen-activated protein kinase (MAP kinase) was stimulated in extracts from TPA-pretreated cells. It is further shown that TPA pretreatment leads to the enhancement of an activity that will induce reactivation of dephosphorylated/inactivated MAP kinase. This TPA-induced activity induces the threonine and tyrosine phosphorylation of p42 in extracts from unstimulated cells.  相似文献   

4.
Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length. To date, none of the proteins required for flagellar length control have been identified in any eukaryotic organism. Here, we show that a novel MAP kinase is crucial to enforcing wild-type flagellar length in C. reinhardtii. Null mutants of LF4 [2], a gene encoding a protein with extensive amino acid sequence identity to a mammalian MAP kinase of unknown function, MOK [3], are unable to regulate the length of their flagella. The LF4 protein (LF4p) is localized to the flagella, and in vitro enzyme assays confirm that the protein is a MAP kinase. The long-flagella phenotype of lf4 cells is rescued by transformation with the cloned LF4 gene. The demonstration that a novel MAP kinase helps enforce flagellar length control indicates that a previously unidentified signal transduction pathway controls organelle size in C. reinhardtii.  相似文献   

5.
Dealing with osmostress through MAP kinase activation   总被引:5,自引:0,他引:5       下载免费PDF全文
In response to changes in the extracellular environment, cells coordinate intracellular activities to maximize their probability of survival and proliferation. Eukaryotic cells, from yeast to mammals, transduce diverse extracellular stimuli through the cell by multiple mitogen-activated protein kinase (MAPK) cascades. Exposure of cells to increases in extracellular osmolarity results in rapid activation of a highly conserved family of MAPKs, known as stress-activated MAPKs (SAPKs). Activation of SAPKs is essential for the induction of adaptive responses required for cell survival upon osmostress. Recent studies have begun to shed light on the broad effects of SAPK activation in the modulation of several aspects of cell physiology, ranging from the control of gene expression to the regulation of cell division.  相似文献   

6.
Internalization of activated receptors from the plasma membrane has been implicated in the activation of mitogen-activated protein (MAP) kinase. However, the mechanism whereby membrane trafficking may regulate mitogenic signaling remains unclear. Here we report that dominant-negative dynamin (K44A), an inhibitor of endocytic vesicle formation, abrogates MAP kinase activation in response to epidermal growth factor, lysophosphatidic acid, and protein kinase C-activating phorbol ester. In contrast, dynamin-K44A does not affect the activation of Ras, Raf, and MAP kinase kinase (MEK) by either agonist. Through immunofluorescence and subcellular fractionation studies, we find that activated MEK is present both at the plasma membrane and in intracellular vesicles but not in the cytosol. Our findings suggest that dynamin-regulated endocytosis of activated MEK, rather than activated receptors, is a critical event in the MAP kinase activation cascade.  相似文献   

7.
The MAPK cascades regulate a wide variety of cellular functions, including cell proliferation, differentiation, and stress responses. Here we have identified a novel MAP kinase kinase kinase (MAPKKK), termed MLTK (for MLK-like mitogen-activated protein triple kinase), whose expression is increased by activation of the ERK/MAPK pathway. There are two alternatively spliced forms of MLTK, MLTKalpha and MLTKbeta. When overexpressed in cells, both MLTKalpha and MLTKbeta are able to activate the ERK, JNK/SAPK, p38, and ERK5 pathways. Moreover, both MLTKalpha and MLTKbeta are activated in response to osmotic shock with hyperosmolar media through autophosphorylation. Remarkably, expression of MLTKalpha, but not MLTKbeta, in Swiss 3T3 cells results in the disruption of actin stress fibers and dramatic morphological changes. A kinase-dead form of MLTKalpha does not cause these phenomena. Inhibition of the p38 pathway significantly blocks MLTKalpha-induced stress fiber disruption and morphological changes. These results suggest that MLTK is a stress-activated MAPKKK that may be involved in the regulation of actin organization.  相似文献   

8.
Mammalian mitogen-activated protein kinase (MAPK) cascades control various cellular events, ranging from cell growth to apoptosis, in response to external stimuli. A conserved docking site, termed DVD, is found in the mammalian MAP kinase kinases (MAPKKs) belonging to the three major subfamilies, namely MEK1, MKK4/7, and MKK3/6. The DVD sites bind to their specific upstream MAP kinase kinase kinases (MAPKKKs), including MTK1 (MEKK4), ASK1, TAK1, TAO2, MEKK1, and Raf-1. DVD site is a stretch of about 20 amino acids immediately on the C-terminal side of the MAPKK catalytic domain. Mutations in the DVD site strongly inhibited MAPKKs from binding to, and being activated by, their specific MAPKKKs, both in vitro and in vivo. DVD site mutants could not be activated by various external stimuli in vivo. Synthetic DVD oligopeptides inhibited specific MAPKK activation, both in vitro and in vivo, demonstrating the critical importance of the DVD docking in MAPK signaling.  相似文献   

9.
A Basu  A P Kozikowski  J S Lazo 《Biochemistry》1992,31(15):3824-3830
Structure-activity studies of novel synthetic analogues of lyngbyatoxin A reveal that the lactam ring but not the 7-linalyl moiety of lyngbyatoxin A is essential for the in vitro stimulation of protein kinase C (PKC). (-)-Indolactam V (ILV), which contains no hydrophobic substituent at C-7, or analogues containing either a linalyl or n-hexyl group at C-7 were equally efficacious in stimulating HeLa cell PKC in vitro and in competing with phorbol 12,13-dibutyrate for binding to PKC in intact cells. The hydrophobicity of alkyl groups at C-7, however, influenced the potency of these compounds to bind to and activate PKC. In addition, these compounds exhibited differences in their ability to translocate PKC. Lyngbyatoxin A (0.1 microM) like TPA induced a rapid translocation of PKC from the cytosol to the membrane and subsequently led to a sustained decrease in both cytosolic and membrane PKC activity. In contrast, (-)-n-hexylILV (0.1 microM) and (-)-ILV (1 microM) produced a transient and attenuated decrease in cytosolic PKC activity. At concentrations that produced half-maximal PKC stimulation, (-)-ILV did not cause any downregulation of PKC whereas lyngbyatoxin A and (-)-n-hexylILV led to 60% and 40% PKC downregulation, respectively. Western blot analyses with monoclonal antibodies to PKC isoforms indicated that reduction in PKC activity by chronic exposure to TPA or lyngbyatoxin A analogues could be explained by downregulation of PKC alpha. Constitutive expression of PKC beta and PKC gamma isoforms was low in HeLa cells and was not affected significantly by TPA or lyngbyatoxin A analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Analysis of a developmental mutant in Dictyostelium discoideum which is unable to initiate morphogenesis has shown that a protein kinase of the MAP kinase/ERK family affects relay of the cAMP chemotactic signal and cell differentiation. Strains in which the locus encoding ERK2 is disrupted respond to a pulse of cAMP by synthesizing cGMP normally but show little synthesis of cAMP. Since mutant cells lacking ERK2 contain normal levels of both the cytosolic regulator of adenylyl cyclase (CRAC) and manganese-activatable adenylyl cyclase, it appears that this kinase is important for receptor-mediated activation of adenylyl cyclase.  相似文献   

11.
Two-hybrid screening of a tobacco BY-2 cell suspension cDNA library using the p43(Ntf6) mitogen-activated protein (MAP) kinase as bait resulted in the isolation of a cDNA encoding a protein with features characteristic of a MAP kinase kinase (MEK), which has been called NtMEK1. Two-hybrid interaction analysis and pull-down experiments showed a physical interaction between NtMEK1 and the tobacco MAP kinases p43(Ntf6) and p45(Ntf4), but not p43(Ntf3). In kinase assays NtMEK1 preferentially phosphorylated p43(Ntf6). Functional studies in yeast showed that p43(Ntf6) could complement the yeast MAP kinase mutant mpk1 when co-expressed with NtMEK1, and that this complementation depended on the kinase activity of p43(Ntf6). Expression analysis showed that the NtMEK1 and ntf6 genes are co-expressed both in plant tissues and following the induction of cell division in leaf pieces. These data suggest that NtMEK1 is an MEK for the p43(Ntf6) MAP kinase.  相似文献   

12.
Aβ vaccination as a therapeutic intervention of Alzheimer’s has many challenges, key among them is the regulation of inflammatory processes concomitant with excessive generation of free radicals seen during such interventions. Here we report the beneficial effects of melatonin on inflammation associated with Aβ vaccination in the central and peripheral nervous system of mice. Mice were divided into three groups (n = 8 in each): control, inflammation (IA), and melatonin-treated (IAM). The brain, liver, and spleen samples were collected after 5 days for quantitative assessment of plasma lipid peroxides (LPO), an oxidative stress marker, and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (Gpx). IA group mice have shown the elevated concentration of LPO significantly while there was a reduction at antioxidant enzyme levels. In addition, a significant (P < 0.05) reduction in neurotransmitters like dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) was also observed in the IA group mice. Nevertheless, their metabolites, such as homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-HIAA) increased significantly (P < 0.05) as compared to control. Samples were further evaluated at microscopic level to examine the neuropathological changes by immunohistochemical methods. Melatonin treatment effectively reversed these above changes and normalized the LPO and antioxidant enzyme levels (P < 0.05). Furthermore, melatonin salvaged the brain cells from inflammation. Our Immunohistochemical findings in the samples of melatonin-treated animals (IAM group) indicated diminished expression of glial fibrillary acidic protein (GFAP) and nuclear factor kappa B (NfκB) than those observed in the IA group samples. Our results suggest that administration of melatonin protects inflammation associated with Aβ vaccination, through its direct and indirect actions and it can be an effective adjuvant in the development of vaccination in immunotherapy for Alzheimer’s disease (AD).  相似文献   

13.
Oxidative stress-induced cell damage is an important component of many diseases and ageing. In eukaryotes, activation of JNK/p38 stress-activated protein kinase (SAPK) signaling pathways is critical for the cellular response to stress. 2-Cys peroxiredoxins (2-Cys Prx) are highly conserved, extremely abundant antioxidant enzymes that catalyze the breakdown of peroxides to protect cells from oxidative stress. Here we reveal that Tpx1, the single 2-Cys Prx in Schizosaccharomyces pombe, is required for the peroxide-induced activation of the p38/JNK homolog, Sty1. Tpx1 activates Sty1, downstream of previously identified redox sensors, by a mechanism that involves formation of a peroxide-induced disulphide complex between Tpx1 and Sty1. We have identified conserved cysteines in Tpx1 and Sty1 that are essential for normal peroxide-induced Tpx1-Sty1 disulphide formation and Tpx1-dependent regulation of peroxide-induced Sty1 activation. Thus we provide new insight into the response of SAPKs to diverse stimuli by revealing a mechanism for SAPK activation specifically by oxidative stress.  相似文献   

14.
Humanin delays apoptosis in K562 cells by downregulation of P38 MAP kinase   总被引:2,自引:0,他引:2  
Humanin (HN) is a newly identified neuroprotective peptide. In this study, we investigated its antiapoptotic effect and the potential mechanisms in K562 cells. Upon serum deprivation, expression of HN in K562 cells decreased and its intracellular distribution changed from cytoplasm to cell membrane. In HN stably transfected K562 cells, apoptosis was delayed compared with control vector transfected cells as measured by flow cytometry. Furthermore, analysis of different mitogen-activated protein (MAP) kinases activity revealed that extracellular signal-regulated kinase (ERK) pathway was inhibited while p38 signaling was activated following serum deprivation in K562 cells. And in HN transfected K562 cells, ERK downregulation was not affected, but p38 activation was suppressed, which may responsible for the delayed apoptosis in these cells. Activation of the ERK signaling pathway by phorbol myristate 13-acetate (PMA) and sorbitol protected K562 cells from serum deprivation induced apoptosis. Additionally, overexpression of HN reduced megakaryocytic differentiation of K562 cells. The present data outline the role of ERK and p38 MAP kinases in serum deprivation induced apoptosis in K562 cells and figure out p38 signaling pathway as molecular target for HN delaying apoptosis in K562 cells.  相似文献   

15.
During the continuous culturing of neural PC12 cells, a drug hypersensitive PC12 mutant cell line (PC12m3) was obtained, which demonstrated high neurite outgrowth when stimulated by various drugs. When the immunosuppressant drug FK506 and nerve growth factor (NGF) were introduced to the PC12m3 cells, the frequency of neurite outgrowth increased approximately 40-fold for NGF alone. However, the effect of FK506 on neuritogenesis in PC12 parental and drug insensitive PC12m1 mutant cells was much lower than in PC12m3 cells. The sustained activation of mitogen-activated protein (MAP) kinase plays an important role in neurite outgrowth of PC12 cells. Interestingly, the drug hypersensitive PC12m3 cells exhibited the sustained activation of MAP kinase with FK506 in comparison to low or no activities in PC12 parental or drug insensitive PC12m1 cells. These results indicate that PC12m3 cells have a novel FK506-induced MAP kinase pathway for neuritogenesis.  相似文献   

16.
Exogenous lysophosphatidic acid (LPA) has been shown to evoke a chemotactic response in aggregative cells of the social amoeba Dictyostelium discoideum. In this paper, we demonstrate that extracellular LPA is also able to induce activation of mitogen-activated protein (MAP) kinase DdERK2 (extracellular signal regulated kinase 2) in these cells. This activation is independent of cyclic AMP receptors, yet fully dependent on the single Gbeta subunit, hinting to the presence of functional heptahelical LPA receptors in a primitive eukaryote. We did not observe LPA-dependent cyclic GMP accumulation, which suggests that the pathways for LPA-induced and "classical" chemotaxis of D. discoideum cells are substantially different.  相似文献   

17.
18.
19.
Rapid recognition and signal transduction of mechanical wounding through various signaling molecules, including calcium (Ca2+), protein phosphorylation, and reactive oxygen species (ROS), are necessary early events leading to stress resistance in plants. Here we report that an Arabidopsis mitogen-activated protein kinase 8 (MPK8) connects protein phosphorylation, Ca2+, and ROS in the wound-signaling pathway. MPK8 is activated through mechanical wounding, and this activation requires direct binding of calmodulins (CaMs) in a Ca2+-dependent manner. MPK8 is also phosphorylated and activated by a MAPKK MKK3 in the prototypic kinase cascade, and full activation of MPK8 needs both CaMs and MKK3 in planta. The MPK8 pathway negatively regulates ROS accumulation through controlling expression of the Rboh D gene. These findings suggest that two major activation modes in eukaryotes, Ca2+/CaMs and the MAP kinase phosphorylation cascade, converge at MPK8 to monitor or maintain an essential part of ROS homeostasis.  相似文献   

20.
Cellular N-Ras provides a steady-state antiapoptotic signal, at least partially through the regulation of phosphorylated Akt and Bad levels. Fibroblasts lacking c-N-Ras expression are highly sensitive to the induction of apoptosis by a variety of agents. Reduction of pBad and pAkt levels using a phosphatidylinositol 3-kinase inhibitor was not sufficient to sensitize the control cell population to the high level of apoptosis observed in the N-Ras knockout cell lines, suggesting that c-N-Ras provides at least one other antiapoptotic signal. Stimulation of the control cells with apoptotic agents results in a transient increase in Jun N-terminal protein kinase (JNK)/p38 activity that decreased to baseline levels during the time course of the experiments. In all cases, however, sustained JNK/p38 activity was observed in cells lacking c-N-Ras expression. This correlated with sustained levels of phosphorylated MKK4 and MKK3/6, upstream activators of JNK and p38, respectively. Mimicking the sustained activation of JNK in the control cells did result in increasing their sensitivity to apoptotic agents, suggesting that prolonged JNK activity is a proapoptotic event. We also examined the potential downstream c-N-Ras targets that might be involved in regulating the duration of the JNK/p38 signal. Only the RalGDS 37G-N-Ras protein protected the N-Ras knockout cells from apoptosis and restored transient rather than sustained JNK activation. These data suggest that cellular N-Ras provides an antiapoptotic signal through at least two distinct mechanisms, one which regulates steady-state pBad and pAkt levels and one which regulates the duration of JNK/p38 activity following an apoptotic challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号