共查询到20条相似文献,搜索用时 8 毫秒
1.
Characterization of metallothionein cDNAs induced by cadmium in the nematode Caenorhabditis elegans. 总被引:3,自引:0,他引:3 下载免费PDF全文
M Imagawa T Onozawa K Okumura S Osada T Nishihara M Kondo 《The Biochemical journal》1990,268(1):237-240
cDNAs of metallothioneins (MTs) in the nematode Caenorhabditis elegans were characterized. The MT-II clone encodes 62 amino acid residues and the predicted Mr is 6462. The MT-I clone contains an additional 12 residues at the C-terminal end, and the predicted Mr is 7959. There is a considerable similarity between MT-I and MT-II. Both of these proteins are cysteine-rich and, with a few exceptions, show a good alignment of cysteine residues. No obvious sequence relationship in the coding region was discernible between C. elegans MTs and mammalian MTs, aside from Cys-Cys, Cys-Xaa-Cys, and Cys-Xaa-Xaa-Xaa-Cys segments. However, 3'-untranslated region of cDNAs of C. elegans MT-I and -II have some consensus sequences found in mammalian MT cDNAs, suggesting that these regions may have some roles in the regulation of MT-gene expression. 相似文献
2.
J. Nešvera 《Folia microbiologica》1973,18(5):353-360
When zero-point mutations were induced in the yeastSaccharomyces cerevisiae using ethyl methanesulfonate (EMS) no differences were found in the frequency of auxotrophic mutants formed by a short and a prolonged treatment of the agent at equal survival level. The expression of a part of the mutations induced by a prolonged EMS treatment was delayed by one or two division cycles. The total frequency of auxotrophs due to both the zero point and delayed mutations, however, is still considerably lower than the frequency of auxotrophs induced by a prolonged treatment of EMS in some bacterial species. Both the prolonged and short EMS treatment induces in yeast also extranuclear respiration-deficient (RD) mutants at a relatively high frequency; in wild strains at equal survival level the prolonged treatment produces a higher number of RD mutants than the short one. In strain which is more susceptible to the lethal EMS effect than wild strain the number of RD mutants produced by the agent is much higher than in the wild strain. The results support the assumption of the different DNA arrangement in yeast nuclei and mitochondria and indicate the possible effect of repair mechanisms during the induction of mutations causing the respiration deficiency. 相似文献
3.
Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements 总被引:4,自引:0,他引:4
In this study we have determined the utility of 254-nm ultraviolet light (UV) as a mutagenic tool in C. elegans. We have demonstrated that irradiation of adult hermaphrodites provides a simple method for the induction of heritable chromosomal rearrangements. A screening protocol was employed that identifies either recessive lethal mutations in the 40 map unit region balanced by the translocation eT1(III;V), or unc-36(III) duplications. Mutations were recovered in 3% of the chromosomes screened after a dose of 120 J/m2. This rate resembles that for 1500 R gamma-ray-induced mutations selected in a similar manner. The mutations were classified either as lethals [mapping to Linkage Group (LG)III or LGV] or as putative unc-36 duplications. In contrast to the majority of UV-induced mutations analysed in microorganisms, we found that a large fraction of the C. elegans UV-induced mutations are not simple intragenic lesions, but are deficiencies for more than one adjacent gene or more complex events. Preliminary evidence for this conclusion came from the high frequency of mutations that had a dominant effect causing reduced numbers of adult progeny. Subsequently 6 out of 9 analysed LGV mutations were found to be deficiencies. Other specific rearrangements also identified were: one translocation, sT5(II;III), and two unc-36 duplications, sDp8 and sDp9. It was concluded that UV irradiation can easily be used as an additional tool for the analysis of C. elegans chromosomes, and that C. elegans should prove to be a useful organism in which to study the mechanisms whereby UV acts as a mutagen in cells of complex eukaryotes. 相似文献
4.
5.
6.
7.
Föll RL Pleyers A Lewandovski GJ Wermter C Hegemann V Paul RJ 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》1999,124(3):269-280
In Caenorhabditis elegans, mortality rates and changes in concentrations of carbohydrate stores and anaerobic end products were determined in anoxic (test) and normoxic (control) animals at two different temperatures (10 and 20 degrees C). The anoxic tolerance of the free-living nematode proved to be well-developed: at 10 degrees C, about 50% of animals had survived a period of 50 h of anoxia. The carbohydrate stores (approximately 30 mmol glycosyl units kg-1 freshweight (FW)) were reduced by two-thirds within 24 h of anoxia at both temperatures. L-lactate, acetate, succinate, and propionate were identified as the main anaerobic end products. The amounts and proportions of the end products were dependent on temperature. They did not accumulate very much in the tissues, but were mainly excreted. During anoxia, the metabolism of C. elegans was depressed to 3-4% of the aerobic value. The food-source Escherichia coli was found to be at least partly alive in the gut of the animals. To separate between anaerobiosis in animals and bacteria, cleaning procedures were applied, and additional control measurements were made: anaerobic end products produced either by E. coli alone or by bacteria-free (axenic) bred nematodes were quantified at identical incubation conditions. 相似文献
8.
《Seminars in Developmental Biology》1994,5(2):121-130
Gastrulation in Caenorhabditis elegans has been described by following the movements of individual nuclei in living embryos by Nomarski microscopy. Gastrulation starts in the 26-cell stage when the two gut precursors, Ea and Ep, move into the blastocoele. The migration of Ea and Ep does not depend on interactions with specific neighboring cells and appears to rely on the earlier fate specification of the E lineage. In particular, the long cell cycle length of Ea and Ep appears important for gastrulation. Later in embryogenesis, the precursors to the germline, muscle and pharynx join the E descendants in the interior. As in other organisms, the movement of gastrulation permit novel cell contacts that are important for the specification of certain cell fates. 相似文献
9.
J W Drake 《Journal of molecular biology》1988,202(1):11-16
Size distributions of mutant clones can reveal important aspects of the mutation process. Previously published data on mutant clones induced by ethyl methanesulfonate (EMS) in bacteriophage T4 generated a distribution that was essentially flat, implying a mutagenic mechanism involving only rare mispairing by reacted bases. Here, methods for estimating the spontaneous component of such a distribution are used to generate a corrected distribution. The corrected distribution is strongly peaked, implying frequent (but not obligatory) mispairing. Frequent mispairing is in accord with current views of the fates of DNA lesions believed to mediate EMS-induced mutagenesis. 相似文献
10.
Proteases of the nematode Caenorhabditis elegans 总被引:3,自引:0,他引:3
G J Sarkis M R Kurpiewski J D Ashcom L Jen-Jacobson L A Jacobson 《Archives of biochemistry and biophysics》1988,261(1):80-90
Crude homogenates of the soil nematode Caenorhabditis elegans exhibit strong proteolytic activity at acid pH. Several kinds of enzyme account for much of this activity: cathepsin D, a carboxyl protease which is inhibited by pepstatin and optimally active toward hemoglobin at pH 3; at least two isoelectrically distinct thiol proteases (cathepsins Ce1 and Ce2) which are inhibited by leupeptin and optimally active toward Z-Phe-Arg-7-amino-4-methylcoumarin amide at pH 5; and a thiol-independent leupeptin-insensitive protease (cathepsin Ce3) with optimal activity toward casein at pH 5.5. Cathepsin D is quantitatively most significant for digestion of macromolecular substrates in vitro, since proteolysis is inhibited greater than 95% by pepstatin. Cathepsin D and the leupeptin-sensitive proteases act synergistically, but the relative contribution of the leupeptin-sensitive proteases depends upon the protein substrate. 相似文献
11.
Characterization of a G-protein alpha-subunit gene from the nematode Caenorhabditis elegans 总被引:6,自引:0,他引:6
A gene encoding the alpha-subunit of a guanine nucleotide binding regulatory protein (G-protein) was isolated from a library of genomic Caenorhabditis elegans DNA. The predicted coding region is colinear to related genes from mammals and the 356 amino acid residues show 63% sequence identity to e.g. rat Gi alpha 2. Three of the eight introns within the coding sequence are at exactly the same positions as those in a Drosophila G-protein alpha-subunit gene, and two of these are also conserved in the mammalian homologues. The nematode gene does not encode the cysteine residue that forms the substrate site for pertussis toxin-catalyzed ADP-ribosylation in several G-proteins. In spite of the similarity to mammalian G-protein alpha-subunit genes the gene can not unambiguously be categorized in one of the classes of G-proteins recognized in mammals (G alpha i, o, z, etc.). The position of the gene on the physical map of the animal was determined (chromosome V). The cloning and sequencing of this gene can be the starting point of reverse genetics experiments aimed at the isolation of animals mutated in a G-protein alpha-subunit gene. 相似文献
12.
13.
《Mutation Research/DNA Repair Reports》1986,165(2):101-107
DNA glycosylases acting upon uracil- or 3-methyl-adenine-containing DNA have been detected in the sonic extracts of the nematode, Caenorhabditis elegans. 4 types of the asynchronously-growing worms, embryos obtained from gravid hermaphrodites, aseptically-hatched larvae, or dauer larvae. Uracil-DNA glcosylase activity was found in all 4 types of the extracts, and the activity was highest in the embryonic extract. In contrast, 3-methyladenine-DNA glycosylase activity was undetectable in the embryonic extract, while an equal level of activity was found in the other 3 types of the extracts. The results substantiate the ubiquity of base-excision repair in various organisms, and suggest that some of the repair functions may be developmentally regulated in multicellular animals. 相似文献
14.
15.
Polyploid tissues in the nematode Caenorhabditis elegans 总被引:3,自引:0,他引:3
During larval development, the number of somatic nuclei in C. elegans hermaphrodites increases from 558 to 959 (J. E. Sulston and H. R. Horvitz, Dev. Biol. 56, 110-156, 1977; J. E. Sulston et al., Dev. Biol. 100, 64-119, 1983). At the same time, the animals increase about 60-fold in volume. We have measured the DNA contents of several classes of nuclei by quantitating the fluorescence of Hoescht 33258 stained DNA (D. G. Albertson et al., Dev. Biol. 63, 165-178, 1978). Probably all embryonic nuclei, including those of neurons, muscles, hypodermis, and intestine, are diploid at hatching. Neurons, muscles, and nondividing hypodermal nuclei remain diploid throughout larval development. The DNA content of the intestinal nuclei doubles at the end of each larval stage, reaching 32C by the adult stage. New hypodermal cells, generated by division of seam cells in the larval stages, undergo an additional round of DNA replication before fusing with the major syncytium (hyp7, Sulston et al., 1983). Thus the larval hyp7 syncytium comprises a fixed number of diploid embryonic nuclei plus an increasing number of tetraploid postembryonic nuclei. Some of the endoreduplications that occur in the intestinal and hypodermal lineages of C. elegans may correspond to nuclear or cellular divisions in another nematode Panagrellus redivivus (P. W. Sternberg and H. R. Horvitz, Dev. Biol. 93, 181-205, 1982). 相似文献
16.
Van Voorhies WA 《Free radical biology & medicine》2002,33(5):587-596
Research into the causes of aging has greatly increased in recent years. Much of this interest is due to the discovery of genes in a variety of model organisms that appear to modulate aging. Studies of long-lived mutants can potentially provide valuable insights into the fundamental mechanisms of aging. While there are many advantages to the use of model organisms to study aging it is also important to consider the limitations of these systems, particularly because ectothermic (poikilothermic) organisms can survive a far greater metabolic depression than humans. As such, the consideration of only chronological longevity when assaying for long-lived mutants provides a limited perspective on the mechanisms by which longevity is increased. Additional physiological processes, such as metabolic rate, must also be assayed to provide true insight into the aging process. This is especially true in the nematode Caenorhabditis elegans, which has the natural ability to enter into a metabolically reduced state in which it can survive many times longer than its normal lifetime. The extended longevity of at least some long-lived C. elegans mutants may be due to a reduction in metabolic rate, rather than an alteration of a metabolically independent genetic mechanism specific for aging. 相似文献
17.
Lindblom TH Dodd AK 《Journal of experimental zoology. Part A, Comparative experimental biology》2006,305(9):720-730
The nematode Caenorhabditis elegans is an important model organism for the study of such diverse aspects of animal physiology and behavior as embryonic development, chemoreception, and the genetic control of lifespan. Yet, even though the entire genome sequence of this organism was deposited into public databases several years ago, little is known about xenobiotic metabolism in C. elegans. In part, the paucity of detoxification information may be due to the plush life enjoyed by nematodes raised in the laboratory. In the wild, however, these animals experience a much greater array of chemical assaults. Living in the interstitial water of the soil, populations of C. elegans exhibit a boom and bust lifestyle characterized by prodigious predation of soil microbes punctuated by periods of dispersal as a non-developing alternative larval stage. During the booming periods of population expansion, these animals almost indiscriminately consume everything in their environment including any number of compounds from other animals, microorganisms, plants, and xenobiotics. Several recent studies have identified many genes encoding sensors and enzymes these nematodes may use in their xeno-coping strategies. Here, we will discuss these recent advances, as well as the efforts by our lab and others to utilize the genomic resources of the C. elegans system to elucidate this nematode's molecular defenses against toxins. 相似文献
18.
19.
CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans 总被引:3,自引:0,他引:3
Although over 80 cytochrome P450 (CYP) encoding genes have been identified in the genome of the nematode Caenorhabditis elegans very little is known about their involvement in biotransformation. This paper demonstrates a concentration-dependent relationship of C. elegans CYP35A1, A2, A5, and C1 gene expression in response to four organic xenobiotics, namely atrazine, PCB52, fluoranthene, and lansoprazole. The toxicity of these xenobiotics was determined using a reproduction assay. CYP-specific messenger RNA expression was analyzed by semi-quantitative RT-PCR resulting in a strongly increasing, concentration-dependent induction well below the EC50 for reproduction. For PCB52, approximately 0.5% of the EC50 induces a 2-fold increase of CYP35 gene expression. Using a double mutant and multiple RNAi of CYP35A/C it was possible to diminish the reproduction decline caused by PCB52 and fluoranthene. 相似文献
20.