首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the dry weights of various parts of the castor bean seedling showed that the rates of transfer of material through the cotyledons to the embryonic axis exceeded 2 mg/hour after 5 to 6 days of germination. The sugar present in the endosperm was predominantly, and in the cotyledon almost exclusively, sucrose. Anatomical features were described which contribute to the efficiency of the cotyledons as organs of absorption and transmittal of sucrose to the embryonic axis, where hexoses are much more prevalent.The ability of the cotyledons to absorb sucrose survived removal of the endosperm from the seedling. A series of experiments is described in which the cotyledons of such excised seedlings were immersed in sucrose-(14)C and measurements made of uptake and of translocation to various parts of the seedling. Increasing rates of absorption were observed as the sucrose concentration was raised to 0.5 m and these rates were maintained for several hours. Removal of the embryonic axis (hypocotyl plus roots) drastically altered both the response to sucrose concentration and the time course of absorption by the cotyledons.More than 80% of the sugar normally entering the cotyledons from the endosperm is transmitted to the embryonic axis and this extensive turnover was seen also in pulse/chase experiments with excised seedlings. The cotyledons of excised seedlings absorbed sucrose against high apparent concentration gradients. The absorption was stimulated by phosphate and had a pH optimum at about pH 6.4. It was inhibited by arsenate, azide and 2,4-dinitrophenol.  相似文献   

2.
Changes in starch and sugar contents in the cotyledons during germination have been compared in a smooth (cv. Alaska) and a wrinkled (cv. Progress) cultivar of the garden pea ( Pisum sativum L.). In both cultivars there was an initial accumulation of sucrose due to the hydrolysis of sucrosyl oligosaccharides, but galactose did not accumulate in the cotyledons. Starch mobilization in the Progress pea was linear with time and started before the rise in α-amylase (EC 3.2.1.1) activity in the cotyledons; sucrose was synthesized in the cotyledons, and their excision from the axis resulted in an additional accumulation of this sugar. In the Alaska pea, the onset of starch hydrolysis coincided with the rise in α-amylase activity; no accumulation of sucrose was found in excised cotyledons, whilst the sucrose content decreased continuously in attached cotyledons.
The same sugars were found in the cotyledons of both cultivars, suggesting a common pathway for starch breakdown. Maltose, maltotriose and linear malto-dextrins were not present and only trace amounts of glucose were detected, suggesting a degradation of starch by phosphorylase after an initial attack by α-amylase. α-Amylase activity in the cotyledons was higher in the presence of the axis, but was influenced by the water content of the cotyledons. Transient changes in α-amylase activity correlated well with changes in the rate of starch hydrolysis, but after 2–3 days starch mobilization was reduced in excised cotyledons probably due to the resynthesis of starch.  相似文献   

3.
《Plant science》1987,51(1):21-28
With the onset of the degradation of galactomannan, the galactose and mannose levels increased in the endosperm. The hydrolysis of galactomannan was more or less complete within the first 3 days of germination. In the cotyledons, sucrose was the predominant free sugar during the period of rapid galactomannan hydrolysis and reducing sugars (glucose + fructose) were present in only 10–20% proportion. The level of soluble acid invertase activity was in the order of embryonic axis > endosperm > cotyledons. On the basis of (a) absence of galactose and mannose, (b) high proportion of sucrose, (c) very fast conversion of [14C]glucose and [14C]mannose to [14C]sucrose and (d) very low levels of both soluble and bound invertases in cotyledons, we conclude that there is an active synthesis of sucrose in this tissue where disaccharide seems to be least hydrolysed during the period of galactomannan mobilization. A rapid hydrolysis of galactomannan in endosperm during early germination resulted in the synthesis of some starch, as a temporary reserve, in cotyledons. When the cotyledons entered the phase of first leaf formation, cotyledonary sucrose was hydrolysed giving rise to invert sugars. In the embryonic axis, the increase in the ratio of reducing sugars to sucrose coupled with a higher level of invertase, compared with sucrose-UDP glucosyl transferase, indicated that free sugars from the cotyledons are translocated to the embryonic axis as sucrose.  相似文献   

4.
P. Barthe  C. Bulard 《Planta》1981,152(4):336-340
Pyrus malus L. var. Golden delicious embryos were incubated with (±)-[2-14C]abscisic acid (ABA) (10-5 M, 355 kBq mol-1). After incubations of various durations, the radioactivity was measured in whole embryos, cotyledons, and embryonic axes.With either 48-h or 16-d incubation periods, the uptake of [14C]ABA depended upon the mode of culture used. The lowest values corresponded to the absorption by the embryonic axis, the highest to the absorption by the distal parts of the two cotyledons. The cotyledons accumulated the main part of the radioactivity under all conditions. Dormant and almost completely after-ripened embryos cultivated for 4 d showed no significant differences in the radioactivity uptake for identical modes of culture. There was a linear relationship between exogenous ABA concentrations (0.5 to 3.10-5 M) and ABA uptake for embryos cultivated for 4 d with the distal parts of the cotyledons immersed in the medium.Abbreviations ABA abscisic acid. RM, RM+, C/2 M, and CM are different modes of embryo cultures: embryonic axis immersed alone (RM), together with the proximal parts of the cotyledons (RM+); distal parts of the cotyledons immersed alone (CM); embroyo flat on the medium, the root and the external surface of one cotyledon being in contact with the medium (C/2 M) - PP proximal parts of the cotyledons - DP distal parts of the cotyledons  相似文献   

5.
The influence of the embryonic axis and cytokinins (CKs) onreserve mobilization has been examined in yellow lupin (Lupinusluteus L. cv. JSG 6167) seed during germination and during earlygrowth for up to 9 d in the dark. The study included determinationof starch, soluble sugars, proteins, and amino acid content.Amylolytic and proteolytic enzyme activity was also measuredin untreated cotyledons with intact embryo (attached) or detachedcotyledons (embryo removed), and in detached cotyledons followingtreatment with CKs namely, dihydrozeatin, (diH)Z, and 6-benzylaminopurine,BAP. Generally, the detached cotyledons showed reduced mobilizationand decreased enzymatic activity in comparison to attached cotyledons,indicating the importance of the embryonic axis in this process.However, a rise in protease activity and free amino acid contentwas detected in 9-d-old detached cotyledons suggesting thatthe end products do not necessarily inhibit enzyme activity.While (diH)Z was partially effective in inducing reserve mobilizationand enzymatic activity in detached cotyledons, the effect ofBAP was more pronounced and appeared to replace the embryonicaxis. The embryonic axis of this species has recently been shownto synthesize CKs which are transported to the cotyledons, arehighly stabe and induce cotyledon expansion and chlorophyllsynthesis. The results of the present investigation and previousstudies from this laboratory collectively indicate that theregulation of reserve mobilization in yellow lupin seeds appearsto be mediated, at least in part, by a stimulus, probably aCK, emanating from the embryonic axis. Key words: Lupinus luteus, cytokinins, benzylaminopurine, dihydrozeatin, embryonic axis, lupin seeds, reserve mobilization  相似文献   

6.
Excision of the embryonic axis prior to 3 1/2 days of germination in the dark followed by 8-h of light decreased the total chlorophyll content of cucumber cotyledons but not squash cotyledons. Benzyladenine stimulated the accumulation of chlorophyll in the cotyledons of intact embryos and excised cotyledons in both cucumber and squash. Gibberellic acid had no effect. Atrazine inhibited chlorophyll formation in excised squash cotyledons. Benzyladenine also increased the carotenoid and xanthophyll content in the cotyledons from intact squash seedlings. The results suggest that pigment synthesis in cotyledons may be controlled by a number of substances produced in the embryonic axis and that cytokinin-like benzyladenine can simulate the action of one of them.  相似文献   

7.
Fusicoccin inhibits the germination of pea (Pisum sativum L. cv Progress 9) seeds by decreasing the growth of the embryonal axis and by stimulating the fresh weight increase of the cotyledons. The growth of isolated embryonal axes in the presence of sucrose and KCl is stimulated by fusicoccin. The effect of fusicoccin on the seeds is not counteracted by sucrose and KCl. Fusicoccin promotes preferentially in the cotyledons a hyperpolarization of the transmembrane electric potential and an increase in the uptake capacity, suggesting the reinforcement of the sink strength of the cotyledons in comparison with the one of the embryonal axis and therefore the inhibition of translocation from the cotyledons of some substance necessary for the growth of the embryonal axis.  相似文献   

8.
Diamine oxidase (DAO, EC 1.4.3.6.), which participates in oxidative catabolism of polyamines (PAs), was not detected in the dry viable chickpea (Cicer arietinum L.) seeds. From the time when the embryonic axis acquired an aerobic metabolism, DAO increased concomitantly with the growth of the embryonic axis and at the same time with the deterioration of the cotyledons, although in these organs the values were clearly lower than in the axis. The highest DAO activity in the embryonic axis of seedlings grown for 72 and 96 h was found in the elongation, differentiation and hypocotyl zones, while the lowest was in the apex and plumule. The absence of cotyledons promoted the early appearance of DAO in the embryonic axis. When germination occurred at supraoptimal temperatures (30 – 35 °C), DAO activity was sharply inhibited both in the cotyledons and in the embryonic axis. This inhibition was accentuated further in the presence of cyclohexylamine, an inhibitor of spermidine synthase activity, to such a degree that DAO was undetectable in the cotyledons. DAO inhibition by EGTA and the pronounced reversal induced by Ca2+ implies that calcium may be related to DAO activity. The presence of putrescine, spermidine and spermine in the germination medium stimulated DAO activity, although this activity was inhibited when the exogenous PA was cadaverine.  相似文献   

9.
Embryos isolated from dormant seeds of apple (Malus domestica Borb., cv. Antonówka) were treated by gaseous HCN (1 mM) for 6 h and then cultured in the light for 9 d in parallel to control non-treated embryos. Soluble sugars were quantified, and oligosaccharide hydrolysing enzyme activities were determined in axes and in cotyledons of such embryos during culture. HCN pre-treatment stimulated germination and hydrolysis of oligosaccharides in embryonic axes. Hydrolysis of sucrose in the lower cotyledon (in contact with wet medium and therefore growing and greening faster) was affected by HCN to a small extent. On the other hand, growth, greening and sucrose hydrolysis in the upper cotyledon were stimulated by HCN pre-treatment to the levels observed in lower cotyledon. It is postulated that endogenous HCN in apple seeds controls the removal of embryonic dormancy in parallel to the earlier described control by light and gibberellin. Gibberellin was demonstrated to act on the hydrolysis and further transformations of storage lipids, including gluconeogenesis, but not β-oxidation of fatty acids. It appears that hydrolysis of oligosaccharides and their catabolism is the target for cyanide.  相似文献   

10.
The activity of diamine oxidase (EC 1.4.3.6.) in pea, Pisum sativum cv Alaska, cotyledons was studied. The rapid hydration caused by soaking seeds in water, the excision of the embryonic axis, and the suppression of the elongation of the embryonic axis by indoleacetic acid generate anaerobic conditions in these cotyledons that suppress diamine oxidase activity. These results show that oxygen is essential for the induction of diamine oxidase activity in pea cotyledons. During germination cotyledonary diamine oxidase develops as a result of the supply of oxygen through the embryonic axis of the intact pea seedling.  相似文献   

11.
The free amino acid, protein, water and dry matter contents were determined during the seed development of Araucaria angustifolia. Soluble and insoluble proteins in the mature seed represent 4.2 % of the fresh matter. The embryonic axis stored the greatest amount of soluble proteins, while cotyledons both with the embryonic axis showed the largest quantities of insoluble proteins in the mature seed. The greatest concentration of free amino acids was detected during the stage when cotyledons start to develop. Glutamic acid, aspartic acid, alanine and serine were predominant in the whole seed while arginine, lysine and γ-aminobutyric acid were present in great amounts only in cotyledons and embryonic axis. Although megagametophyte was important as a source of free amino acids, it was not the major protein storage organ in the mature seed. In the embryogenetic process, the rise of cotyledons is closely related to physiological and biochemical changes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Respiratory control ratio (RCR), ADP: O and oxygen uptake by isolated mitochondria from cotyledons of the genus Pisum were studied. It is shown that in P. sativum the embryonic axis has a slight effect on the behaviour of the mitochondria in the cotyledons, accelerating their degeneration. The inducing factor is transferred within 1 hr from the onset of imbibition from the axis to the cotyledon. In P. elatius the embryonic axis completely lacked an effect on the mitochondria in the cotyledons. Mitochondria in P. elatius seemed to be highly organized and not leaky.  相似文献   

13.
Ethanolic extracts from the cotyledons of mature dry Phaseolusvulgaris L. seed yielded cytokinin-like activity which co-chromatographedwith zeatin and ribosylzeatin. Under conditions which stimulatedgermination and cotyledon expansion, the level of these cytokininsdecreased rapidly in both intact embryos and excised cotyledons.In the excised cotyledons the decrease was continuous, resultingin very low levels of cytokinin being detected after 4 daysof incubation. With the embryonic axis present, however, theinitial decrease was arrested and reversed after 3 days. Thissuggests that the cotyledons do not synthesize cytokinins butthat these hormones are imported from the embryonic axis, particularlyonce radicle growth is well under way. Phaseolus vulgaris, bean, cotyledons, cytokinins, germination  相似文献   

14.
Low temperature represents one of the principal limitations in species distribution and crop productivity. Responses to chilling include the accumulation of simple carbohydrates and changes in enzymes involved in their metabolism. Soluble carbohydrate levels and invertase, sucrose synthase (SS), sucrose-6-phosphate synthase (SPS) and alpha-amylase activities were analysed in cotyledons and embryonic axes of quinoa seedlings grown at 5 degrees C and 25 degrees C in the dark. Significant differences in enzyme activities and carbohydrate levels were observed. Sucrose content in cotyledons was found to be similar in both treatments, while in embryonic axes there were differences. Invertase activity was the most sensitive to temperature in both organs; however, SS and SPS activities appear to be less stress-sensitive. Results suggest that 1) metabolism in germinating perispermic seeds would be different from endospermic seeds, 2) sucrose futile cycles would be operating in cotyledons, but not in embryonic axes of quinoa seedlings under our experimental conditions, 3) low temperature might induce different regulatory mechanisms on invertase, SS and SPS enzymes in both cotyledons and embryonic axes of quinoa seedlings, and 4) low temperature rather than water uptake would be mainly responsible for the changes observed in carbohydrate and related enzyme activities.  相似文献   

15.
Sucrose uptake was studied in isolated, immature pea cotyledons (Pisum sativum L. cv Marzia) in relation to their developmental stage. During the developmental period examined the water content of the cotyledons decreased from ≈80% “stage 1” to ≈55% “stage 2”. When assayed in an isotonic medium (400 osmoles per cubic meter) the influx capacity per gram fresh weight for sucrose was almost constant during this developmental period. The influx could be analyzed into a saturable component (Km ≈ 9 moles per cubic meter; Vmax ≈ 150 nanomoles per minute per gram fresh weight) and an unsaturable component (ki ≈ 0.5 nanomoles per minute per gram fresh weight [per mole per cubic meter]). Incubation in a hypotonic medium reduced the sucrose influx in stage 1 cotyledons, up to 80% reduction at 0 milliosmole (medium without mannitol), but had no effect on sucrose uptake by stage 2 cotyledons. Reduced uptake in a hypotonic medium (100 osmoles per cubic meter) could be attributed to a lowering of the Vmax from 150 to 36 nanomoles per minute per gram fresh weight. During incubation of stage 1 cotyledons and stage 2-cotyledons in a hypotonic medium (200 osmoles per cubic meter) their volume increased by 16% and 5.6%, respectively, while the calculated turgor pressure increased from 0.2 to 0.6 megapascal for cotyledons of both developmental stages. Reduced sucrose influx in hypotonic medium, therefore, seems to be related to cell swelling (membrane stretching) rather than to increased turgor pressure.  相似文献   

16.
Characterization of sugar content and enzyme activity in germinating soybean (Glycine max L. Merrell) seeds led to the discovery of sorbitol accumulating in the axes during germination. The identity of sorbitol was confirmed by relative retention times on high-performance liquid chromatography and gas liquid chromatography and by mass spectra identical with authentic sorbitol. Accumulation of sorbitol in the axes started on day 1 of germination as sucrose decreased and glucose and fructose increased. Sucrose also decreased in the cotyledons, but there was no accumulation of sorbitol, glucose, or fructose. Accumulation of sorbitol and hexoses was highly correlated with increased invertase activity in the axes, but not with sucrose synthase and sucrose phosphate synthase activities. Sucrose synthase activity was relatively high in the axes, whereas the activity of sucrose phosphate synthase was relatively high in the cotyledons. Ketose reductase and aldose reductase were detected in germinating soybean axes, but not in cotyledons. Fructokinase and glucokinase were present in both axes and cotyledons. The data suggest a sorbitol pathway functioning in germinating soybean axes, which allows for the interconversion of glucose and fructose with sorbitol as an intermediate.  相似文献   

17.
Pulse-chase experiments indicated that the higher levels ofa-amylase in detached and incubated cotyledons of Vigna mungothan those in cotyledons attached to the embryonic axis weredue to both faster synthesis and slower degradation of the enzymein the detached cotyledons than in the attached cotyledons.Levels of a-amylase in the cotyledons were examined in termsof possible effects of end-products and the effects of exogenouslyapplied plant hormones and growth regulators. Levels of a-amylaseactivity and content were reduced by high concentrations ofglucose and sucrose, and it is suggested that this effect wascaused mostly by osmotic stress and partly by end-product repression.The level of a-amylase was nearly twice that in controls after1 to 10µM GA3 had been applied to the cotyledons. In addition,0.1 mM kinetin, 0.1 mM 2,4-D and 0.1 to 0.S mM naphthaleneaceticacid also increased the level by 34% to 66% as compared to thecontrol. ABA and uniconazole both prevented the synthesis ofa-amylase. (Received July 4, 1994; Accepted November 14, 1994)  相似文献   

18.
We studied the NaCl-induced changes in cotyledons and the embryonic axis of establishing dwarf cashew (Anacardium occidentale) seedlings. The salt stress reduced the growth of dwarf cashew seedlings, and this response was related to the inhibition of cotyledonary reserve depletion. Lipid mobilization was inhibited by NaCl due to reduced lipase activity in the emerging and establishing seedlings. Additionally, there was reduced transient starch accumulation in the cotyledons of the salt-stressed seedlings that was associated with lower starch synthase activity at the early developmental stages and inhibited amylolytic and starch phosphorylase activities at the established seedling stage. The NaCl-induced changes in lipid and starch metabolism influenced the soluble sugar content in the cotyledons. Protein mobilization was inhibited by NaCl, and we observed the accumulation of amino acids and the inhibition of proteolytic activity in the cotyledons of the salt-stressed established seedlings. Salinity significantly reduced the free amino acid and reducing sugar contents in the embryonic axes of both emerged and established seedlings, whereas the non-reducing sugar content was affected by this stress only in the established seedlings. The Na+ and Cl? contents progressively increased in the cotyledons and embryonic axis of the seedlings as the salinity increased. We conclude that salt stress inhibits dwarf cashew seedling establishment by inhibiting the mobilization of reserves, an inhibition that was related to increased Na+ and Cl? accumulation in the cotyledons. Additionally, these toxic ions reduced the sink strength of the embryonic axis with regard to the products of cotyledonary reserve mobilization.  相似文献   

19.
Prior to illumination, the embryonic axis of sunflower seedlingsmakes a contribution to the cotyledons which enables them togreen more rapidly when subsequently irradiated with white light.The contributions made to this stimulation by the hypocotylhook, hypocotyl, and roots have been investigated. Greeningin sunflower cotyledons reaches an optimum rate when they are6 d old. The developing embryonic axis not only promotes theattainment of this optimum rate but also aids in the maintenanceof this optimum rate as the cotyledons continue to age. Thisstimulatory effect appears to arise primarily from the rootsand can be duplicated by the exogenous application of benzyladenine. In contrast to previous reports we find that the hypocotyl hookplays no role in the control of greening when present duringillumination.  相似文献   

20.
Desiccation tolerance of protoplasts isolated from germinating pea (Pisum sativum L. cv. 'Alaska') embryonic axes depends, in part, on the osmotic strength and composition of the suspending medium. To determine the reason for this dependence and whether treatment with different solutions results in different types of damage, protoplast recovery and survival were assessed after dehydration to a range of water contents. Protoplasts were derived from germinating axes that had intermediate desiccation tolerance. Protoplasts were isolated and resuspended in buffers containing sucrose/raffinose (85:15, w/w) or sorbitol, which were isotonic or hypertonic to the cells of the embryonic axis, then were flash-dried to a range of water contents. Protoplasts were rehydrated and stained with fluorescein diacetate (FDA) to assess survival and to estimate two types of membrane injury: lysis and the loss of semipermeability. In all treatments, protoplast survival dropped sharply during the initial phase of dehydration due to lysis. Protoplast survival was greater in hypertonic sucrose/raffinose buffer than in isotonic sucrose/raffinose buffer, or in the latter made hypertonic by the addition of sorbitol. When sorbitol was substituted for sucrose/raffinose in either the isolation or desiccation buffer, or both, protoplast survival at intermediate and low hydrations decreased due to a loss of membrane semipermeability. The results indicate that additional sucrose/raffinose is beneficial for the desiccation tolerance of protoplasts, the benefit is not due to a simple osmotic effect, and the benefit is greatest at water contents less than 0.5 g g(-1) DW, where the presence of the sugars appears to protect membrane semipermeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号