首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD47 is a ubiquitously expressed membrane protein with an extracellular Ig domain and a multiple membrane-spanning domain that can synergize with antigen to induce interleukin (IL)-2 secretion by T lymphocytes. Ligation of CD47 induced actin polymerization and increased protein kinase Ctheta (PKCtheta) association with the cytoskeleton independent of antigen receptor ligation, but ligation of mutant forms of the molecule missing either the Ig domain or the multiple membrane-spanning domain did not. Simultaneous ligation of CD47 and CD3 led to additive effects on F-actin and synergistic effects on PKCtheta cytoskeletal association. Disruption of membrane rafts by removal of cholesterol with cyclodextrin blocked CD47-induced actin polymerization, and mutant forms of CD47 that localized poorly to rafts failed to effect cytoskeletal rearrangement. However, raft association alone was not sufficient, because a raft-localized CD47 Ig domain bound to the membrane by a glycan phosphoinositol anchor was unable to induce actin polymerization. A mutant form of CD47 without its Ig domain that did not induce actin polymerization or localize to rafts still enhanced T cell receptor (TCR)-dependent tyrosine phosphorylation of PLCgamma and associated Ca(2+) signaling but did not augment IL-2 secretion. Thus, CD47 synergy with TCR to increase [Ca(2+)](i) is independent of actin and rafts but is insufficient to explain CD47 cooperation with TCR in IL-2 synthesis. Full synergy with TCR requires CD47 localization to membrane rafts where ligation leads to TCR-independent signals causing actin polymerization and PKCtheta translocation.  相似文献   

2.
The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin, while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate that activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin’s mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton’s mechanical state.  相似文献   

3.
Zheng B  Wen JK  Han M 《The FEBS journal》2008,275(7):1568-1578
Human heart LIM protein (hhLIM) is a newly cloned protein. In vitro analyses showed that green fluorescent protein (GFP)-tagged hhLIM protein accumulated in the cytoplasm of C2C12 cells and colocalized with F-actin, indicating that hhLIM is an actin-binding protein in C2C12 cells. Overexpression of hhLIM-GFP in C2C12 cells significantly stabilized actin filaments and delayed depolymerization of the actin cytoskeleton induced by cytochalasin B treatment. Expression of hhLIM-GFP in C2C12 cells also induced significant changes in the organization of the actin cytoskeleton, specifically, fewer and thicker actin bundles than in control cells, suggesting that hhLIM functions as an actin-bundling protein. This hypothesis was confirmed using low-speed co-sedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of hhLIM. hhLIM has two LIM domains. To identify the essential regions and sites for association, a series of truncated mutants was constructed which showed that LIM domain 2 has the same activity as full-length hhLIM. To further characterize the binding sites, the LIM domain was functionally destructed by replacing cysteine with serine in domain 2, and results showed that the second LIM domain plays a central role in bundling of F-actin. Taken together, these data identify hhLIM as an actin-binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

4.
LIM kinase phosphorylates and inactivates the actin binding/depolymerizing factor cofilin and induces actin cytoskeletal changes. Several unique structural features within LIM kinase were investigated for their roles in regulation of LIM kinase activity. Disruption of the second LIM domain or the PDZ domain or deletion of the entire amino terminus increased activity in vivo measured as increasing aggregation of the actin cytoskeleton. A kinase-deleted alternate splice product was identified and characterized. This alternate splice product and a kinase inactive mutant inhibited LIM kinase in vivo, indicating that the amino terminus suppresses activity of the kinase domain. Mutation of threonine 508 in the activation loop to valine abolished activity whereas replacement with 2 glutamic acid residues resulted in a fully active enzyme. Dephosphorylation of LIM kinase inhibited cofilin phosphorylation. Mutation of the basic insert in the activation loop inhibited activity in vivo, but not in vitro. These results indicate phosphorylation is an essential regulatory feature of LIM kinase and indicate that threonine 508 and the adjacent basic insert sequences of the activation loop are required for this process. A combination of structural features are thus involved in receiving upstream signals that regulate LIM kinase-induced actin cytoskeletal reorganization.  相似文献   

5.
Cysteine-rich protein 1 (CRP1) has a unique structure with two well separated LIM domains, each followed by a glycine-rich region. Although CRP1 has been shown to interact with actin-binding proteins and actin filaments, the mechanism regulating localization to the actin cytoskeleton in cells is not clear. Experiments using truncated forms showed that the first LIM domain and glycine-rich region are necessary for CRP1 bundling of actin filaments and localization to the actin cytoskeleton. Furthermore, domain swapping experiments replacing the first glycine-rich region with the second resulted in the loss of CRP1 bundling activity and localization to the actin cytoskeleton, identifying seven critical amino acid residues. These results highlight the importance of the first glycine-rich region for CRP1 bundling activity and localization to the actin cytoskeleton. In addition, this work identifies the first LIM domain and glycine-rich region as a distinct actin filament bundling module.  相似文献   

6.
Endoglin is a component of the transforming growth factor-beta receptor complex abundantly expressed at the surface of endothelial cells and plays an important role in cardiovascular development and vascular remodeling. By using the cytoplasmic domain of endoglin as a bait for screening protein interactors, we have identified ZRP-1 (zyxin-related protein 1), a 476-amino acid member that belongs to a family of LIM containing proteins that includes zyxin and lipoma-preferred partner. The endoglin interacting region was mapped within the three double zinc finger LIM domains of the ZRP-1 C terminus. Analysis of the subcellular distribution of ZRP-1 demonstrated that in the absence of endoglin, ZRP-1 mainly localizes to focal adhesion sites, whereas in the presence of endoglin ZRP-1 is found along actin stress fibers. Because the LIM family of proteins has been shown to associate with the actin cytoskeleton, we investigated the possibility of a regulatory role for endoglin with regard to this structure. Expression of endoglin resulted in a dramatic reorganization of the actin cytoskeleton. In the absence of endoglin, F-actin was localized to dense aggregates of bundles, whereas in the presence of endoglin, expressed in endothelial cells, F-actin was in stress fibers and colocalized with ZRP-1. Furthermore, small interfering RNA-mediated suppression of endoglin or ZRP-1, or clustering of endoglin in endothelial cells, led to mislocalization of F-actin fibers. These results suggest a regulatory role for endoglin, via its interaction with ZRP-1, in the actin cytoskeletal organization.  相似文献   

7.
Kidney anion exchanger 1 (kAE1) mediates chloride/bicarbonate exchange at the basolateral membrane of kidney alpha-intercalated cells, thereby facilitating bicarbonate reabsorption into the blood. Human kAE1 lacks the N-terminal 65 residues of the erythroid form (AE1, band 3), which are essential for binding of cytoskeletal and cytosolic proteins. Yeast two-hybrid screening identified integrin-linked kinase (ILK), a serine/threonine kinase, and an actin-binding protein as an interacting partner with the N-terminal domain of kAE1. Interaction between kAE1 and ILK was confirmed in co-expression experiments in HEK 293 cells and is mediated by a previously unidentified calponin homology domain in the kAE1 N-terminal region. The calponin homology domain of kAE1 binds the C-terminal catalytic domain of ILK to enhance association of kAE1 with the actin cytoskeleton. Overexpression of ILK increased kAE1 levels at the cell surface as shown by flow cytometry, cell surface biotinylation, and anion transport activity assays. Pulse-chase experiments revealed that ILK associates with kAE1 early in biosynthesis, likely in the endoplasmic reticulum. ILK co-localized with kAE1 at the basolateral membrane of polarized Madin-Darby canine kidney cells and in alpha-intercalated cells of human kidneys. Taken together these results suggest that ILK and kAE1 traffic together from the endoplasmic reticulum to the basolateral membrane. ILK may provide a linkage between kAE1 and the underlying actin cytoskeleton to stabilize kAE1 at the basolateral membrane, resulting in higher levels of cell surface expression.  相似文献   

8.
Synaptopodin (SYNPO) is a cytoskeletal protein that is preferentially located in mature dendritic spines, where it accumulates in the spine neck and closely associates with the spine apparatus. Formation of the spine apparatus critically depends on SYNPO. To further determine its molecular action, we screened for cellular binding partners. Using the yeast two-hybrid system and biochemical assays, SYNPO was found to associate with both F-actin and alpha-actinin. Ectopic expression of SYNPO in neuronal and non-neuronal cells induced actin aggregates, thus confirming a cytoplasmic interaction with the actin cytoskeleton. Whereas F-actin association is mediated by a central SYNPO motif, binding to alpha-actinin requires the C-terminal domain. Notably, the alpha-actinin binding domain is also essential for dendritic targeting and postsynaptic accumulation of SYNPO in primary neurons. Taken together, our data suggest that dendritic spine accumulation of SYNPO critically depends on its interaction with postsynaptic alpha-actinin and that SYNPO may regulate spine morphology, motility and function via its distinct modes of association with the actin cytoskeleton.  相似文献   

9.
We used confocal microscopy and in vitro analyses to show that Nicotiana tabacum WLIM1, a LIM domain protein related to animal Cys-rich proteins, is a novel actin binding protein in plants. Green fluorescent protein (GFP)-tagged WLIM1 protein accumulated in the nucleus and cytoplasm of tobacco BY2 cells. It associated predominantly with actin cytoskeleton, as demonstrated by colabeling and treatment with actin-depolymerizing latrunculin B. High-speed cosedimentation assays revealed the ability of WLIM1 to bind directly to actin filaments with high affinity. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed a highly dynamic in vivo interaction of WLIM1-GFP with actin filaments. Expression of WLIM1-GFP in BY2 cells significantly delayed depolymerization of the actin cytoskeleton induced by latrunculin B treatment. WLIM1 also stabilized actin filaments in vitro. Importantly, expression of WLIM1-GFP in Nicotiana benthamiana leaves induces significant changes in actin cytoskeleton organization, specifically, fewer and thicker actin bundles than in control cells, suggesting that WLIM1 functions as an actin bundling protein. This hypothesis was confirmed by low-speed cosedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of WLIM1. Taken together, these data identify WLIM1 as a novel actin binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

10.
WIP, the Wiskott-Aldrich syndrome protein-interacting protein, is a human protein involved in actin polymerization and redistribution in lymphoid cells. The mechanism by which WIP reorganizes actin cytoskeleton is unknown. WIP is similar to yeast verprolin, an actin- and myosin-interacting protein required for polarized morphogenesis. To determine whether WIP and verprolin are functional homologues, we analyzed the function of WIP in yeast. WIP suppresses the growth defects of VRP1 missense and null mutations as well as the defects in cytoskeletal organization and endocytosis observed in vrp1-1 cells. The ability of WIP to replace verprolin is dependent on its WH2 actin binding domain and a putative profilin binding domain. Immunofluorescence localization of WIP in yeast cells reveals a pattern consistent with its function at the cortical sites of growth. Thus, like verprolin, WIP functions in yeast to link the polarity development pathway and the actin cytoskeleton to generate cytoskeletal asymmetry. A role for WIP in cell polarity provides a framework for unifying, under a common paradigm, distinct molecular defects associated with immunodeficiencies like Wiskott-Aldrich syndrome.  相似文献   

11.
The LIM domains of WLIM1 define a new class of actin bundling modules   总被引:2,自引:0,他引:2  
Actin filament bundling, i.e. the formation of actin cables, is an important process that relies on proteins able to directly bind and cross-link subunits of adjacent actin filaments. Animal cysteine-rich proteins and their plant counterparts are two LIM domain-containing proteins that were recently suggested to define a new family of actin cytoskeleton regulators involved in actin filament bundling. We here identified the LIM domains as responsible for F-actin binding and bundling activities of the tobacco WLIM1. The deletion of one of the two LIM domains reduced significantly, but did not entirely abolish, the ability of WLIM1 to bind actin filaments. Individual LIM domains were found to interact directly with actin filaments, although with a reduced affinity compared with the native protein. Variants lacking the C-terminal or the inter-LIM domain were only weakly affected in their F-actin stabilizing and bundling activities and trigger the formation of thick cables containing tightly packed actin filaments as does the native protein. In contrast, the deletion of one of the two LIM domains negatively impacted both activities and resulted in the formation of thinner and wavier cables. In conclusion, we demonstrate that the LIM domains of WLIM1 are new autonomous actin binding and bundling modules that cooperate to confer WLIM1 high actin binding and bundling activities.  相似文献   

12.
Intestinal epithelial lipid rafts contain ganglioside GM1 that is the receptor for cholera toxin (CT). The ganglioside binds CT at the plasma membrane (PM) and carries the toxin through the trans-Golgi network (TGN) to the endoplasmic reticulum (ER). In the ER, a portion of the toxin unfolds and translocates to the cytosol to activate adenylyl cyclase. Activation of the cyclase leads to an increase in intracellular cAMP, which results in apical chloride secretion. Here, we find that an intact actin cytoskeleton is necessary for the efficient transport of CT to the Golgi and for subsequent activation of adenylyl cyclase. CT bound to GM1 on the cell membrane fractionates with a heterogeneous population of lipid rafts, a portion of which is enriched in actin and other cytoskeletal proteins. In this actin-rich fraction of lipid rafts, CT and actin colocalize on the same membrane microdomains, suggesting a possible functional association. Depolymerization or stabilization of actin filaments interferes with transport of CT from the PM to the Golgi and reduces the levels of cAMP generated in the cytosol. Depletion of membrane cholesterol, which also inhibits CT trafficking to the TGN, causes displacement of actin from the lipid rafts while CT remains stably raft associated. On the basis of these observations, we propose that the CT-GM1 complex is associated with the actin cytoskeleton via the lipid rafts and that the actin cytoskeleton plays a role in trafficking of CT from the PM to the Golgi/ER and the subsequent activation of adenylyl cyclase. membrane microdomains; membrane lipids; bacterial toxins; endocytosis; intestinal mucosa  相似文献   

13.
To determine the roles of cholesterol and the actin cytoskeleton in apical and basolateral protein organization and sorting, we have performed comprehensive confocal fluorescence recovery after photobleaching analyses of apical and basolateral and raft- and non-raft-associated proteins, both at the plasma membrane and in the Golgi apparatus of polarized MDCK cells. We show that at both the apical and basolateral plasma membrane domains, raft-associated proteins diffuse faster than non-raft-associated proteins and that, different from the latter, they become restricted upon depletion of cholesterol. Furthermore, only transmembrane apical proteins are restricted by the actin network. This indicates that cholesterol-dependent domains exist both at the apical and basolateral membranes of polarized cells and that the actin cytoskeleton has a predominant role in the organization of transmembrane proteins independent of their association with rafts at the apical membrane. In the Golgi apparatus apical proteins appear to be segregated from the basolateral ones in a compartment that is sensitive both to cholesterol depletion and actin rearrangements. Furthermore, consistent with the role of actin rearrangements in apical protein sorting, we found that apical proteins exhibit a differential sensitivity to actin depolymerization in the Golgi of polarized and nonpolarized cells.  相似文献   

14.
CD44, the major cell surface receptor for hyaluronic acid (HA), was shown to localize to detergent-resistant cholesterol-rich microdomains, called lipid rafts, in fibroblasts and blood cells. Here, we have investigated the molecular environment of CD44 within the plane of the basolateral membrane of polarized mammary epithelial cells. We show that CD44 partitions into lipid rafts that contain annexin II at their cytoplasmic face. Both CD44 and annexin II were released from these lipid rafts by sequestration of plasma membrane cholesterol. Partition of annexin II and CD44 to the same type of lipid rafts was demonstrated by cross-linking experiments in living cells. First, when CD44 was clustered at the cell surface by anti-CD44 antibodies, annexin II was recruited into the cytoplasmic leaflet of CD44 clusters. Second, the formation of intracellular, submembranous annexin II-p11 aggregates caused by expression of a trans-dominant mutant of annexin II resulted in coclustering of CD44. Moreover, a frequent redirection of actin bundles to these clusters was observed. These basolateral CD44/annexin II-lipid raft complexes were stabilized by addition of GTPgammaS or phalloidin in a semipermeabilized and cholesterol-depleted cell system. The low lateral mobility of CD44 in the plasma membrane, as assessed with fluorescent recovery after photobleaching (FRAP), was dependent on the presence of plasma membrane cholesterol and an intact actin cytoskeleton. Disruption of the actin cytoskeleton dramatically increased the fraction of CD44 which could be recovered from the light detergent-insoluble membrane fraction. Taken together, our data indicate that in mammary epithelial cells the vast majority of CD44 interacts with annexin II in lipid rafts in a cholesterol-dependent manner. These CD44-containing lipid microdomains interact with the underlying actin cytoskeleton.  相似文献   

15.
Targeting of the minus-end directed microtubule motor cytoplasmic dynein to a wide array of intracellular substrates appears to be mediated by an accessory factor known as dynactin [1-4]. Dynactin is a multi-subunit complex that contains a short actin-related protein 1 (Arp 1) filament with capZ at the barbed end and p62 at the pointed end [5]. The location of the p62 subunit and the proposed role for dynactin as a multifunctional targeting complex raise the possibility of a dual role for p62 in dynein targeting and in Arp1 pointed-end capping. In order to gain further insight into the role of p62 in dynactin function, we have cloned cDNAs that encode two full-length isoforms of the protein from rat brain. We found that p62 is homologous to the nuclear migration protein Ropy-2 from Neurospora [6]; both proteins contain a zinc-binding motif that resembles the LIM domain of several other cytoskeletal proteins [7]. Overexpression of p62 in cultured mammalian cells revealed colocalization with cortical actin, stress fibers, and focal adhesion sites, sites of potential interaction between microtubules and the cell cortex [8,9]. The p62 protein also colocalized with polymers of overexpressed wild-type or barbed-end-mutant Arp1, but not with a pointed-end mutant. Deletion of the LIM domain abolished targeting of p62 to focal-adhesion sites but did not interfere with binding of p62 to actin or Arp1. These data implicate p62 in Arp1 pointed-end binding and suggest additional roles in linking dynein and dynactin to the cortical cytoskeleton.  相似文献   

16.
Cox DN  Muday GK 《The Plant cell》1994,6(12):1941-1953
N-1-Naphthylphthalamic acid (NPA) binding activity is released into the supernatant when plasma membranes are subjected to high-salt treatment, indicating that this activity is peripherally associated with the membrane. Extraction of plasma membrane vesicles with Triton X-100 resulted in retention of NPA binding activity in the detergent-insoluble cytoskeletal pellet. Treatment of this pellet with KI released NPA binding activity, actin, and alpha-tubulin. Dialysis to remove KI led to the repolymerization of cytoskeletal elements and movement of NPA binding activity into an insoluble cytoskeletal pellet. NPA binding activity partitioned into the detergent-insoluble cytoskeletal pellet obtained from both zucchini and maize membranes and was released from these pellets by KI treatment. Treatment of a cytoskeletal pellet with cytochalasin B doubled NPA binding activity in the resulting supernatant. Together, these experiments indicate that NPA binding activity is peripherally associated with the plasma membrane and interacts with the cytoskeleton in vitro.  相似文献   

17.
Cell movement and resistance to mechanical forces are largely governed by the cytoskeleton, a three-dimensional network of protein filaments that form viscoelastic networks within the cytoplasm. The cytoskeleton underlying the plasma membrane of most cells is rich in actin filaments whose assembly and disassembly are regulated by actin binding proteins that are stimulated or inhibited by signals received and transmitted at the membrane/cytoplasm interface. Inositol phospholipids, or phosphoinositides, are potent regulators of many actin binding proteins, and changes in the phosphorylation of specific phosphoinositide species or in their spatial localization are associated with cytoskeletal remodeling in vitro. This review will focus on recent studies directed at defining the structural features of phosphoinositide binding sites in actin binding proteins and on the influence of the physical state of phosphoinositides on their ability to interact with their target proteins.  相似文献   

18.
Analysis of the expression and assembly of the anion transporter by metabolic pulse-chase and steady-state protein and RNA measurements reveals that the extent of association of band 3 with the membrane cytoskeleton varies during chicken embryonic development. Pulse-chase studies have indicated that band 3 polypeptides do not associate with the membrane cytoskeleton until they have been transported to the plasma membrane. At this time, band 3 polypeptides are slowly recruited, over a period of hours, onto a preassembled membrane cytoskeletal network and the extent of this cytoskeletal assembly is developmentally regulated. Only 3% of the band 3 polypeptides are cytoskeletal-associated in 4-d erythroid cells vs. 93% in 10-d erythroid cells and 36% in 15-d erythroid cells. This observed variation appears to be regulated primarily at the level of recruitment onto the membrane cytoskeleton rather than by different transport kinetics to the membrane or differential turnover of the soluble and insoluble polypeptides and is not dependent upon the lineage or stage of differentiation of the erythroid cells. Steady-state protein and RNA analyses indicate that the low levels of cytoskeletal band 3 very early in development most likely result from limiting amounts of ankyrin and protein 4.1, the membrane cytoskeletal binding sites for band 3. As embryonic development proceeds, ankyrin and protein 4.1 levels increase with a concurrent rise in the level of cytoskeletal band 3 until, on day 10 of development, virtually all of the band 3 polypeptides are cytoskeletal bound. After day 10, the levels of total and cytoskeletal band 3 decline, whereas ankyrin and protein 4.1 continue to accumulate until day 18, indicating that the cytoskeletal association of band 3 is not regulated solely by the availability of membrane cytoskeletal binding sites at later stages of development. Thus, multiple mechanisms appear to regulate the recruitment of band 3 onto the erythroid membrane cytoskeleton during chicken embryonic development.  相似文献   

19.
Protein kinase C was measured in the cytoskeletal fraction of lymphocytes, platelets and HL60 cells, by specific binding of [3H]phorbol dibutyrate and by immunoblotting with antibody to a consensus sequence in the regulatory domain of alpha-, beta- and gamma-isozymes of protein kinase C. Treatment of cells for 40 min with a combination of zinc (2-50 microM), zinc ionophore pyrithione and unlabelled phorbol dibutyrate (200 nM) caused up to a ten-fold increase in cytoskeletal protein kinase C and a corresponding decrease in other cellular compartments. Omission of any of the reagents resulted in much less or no translocation. These effects were inhibited by 1,10-phenanthroline, which chelates zinc, and were not seen with calcium. Increase in cytoskeletal protein kinase C persisted for several hours and appeared to involve attachment of the enzyme to actin microfilaments. We propose that zinc, like calcium, regulates the distribution of PKC in cells. However, unlike calcium which controls the binding of PKC to the lipid component on cell membranes, zinc controls the distribution of PKC to membrane cytoskeleton, possibly actin.  相似文献   

20.
As one form of actin binding protein (ABP), LIM domain protein can trigger the formation of actin bundles during plant growth and development. In this study, a cDNA (designated GhPLIM1) encoding a LIM domain protein with 216 amino acid residues was identified from a cotton flower cDNA library. Quantitative RT‐PCR indicated that GhPLIM1 is specifically expressed in cotton anthers, and its expression levels are regulated during anther development of cotton. GhPLIM1:eGFP transformed cotton cells display a distributed network of eGFP fluorescence, suggesting that GhPLIM1 protein is mainly localised to the cell cytoskeleton. In vitro high‐speed co‐sedimentation and low co‐sedimentation assays indicate that GhPLIM1 protein not only directly binds actin filaments but also bundles F‐actin. Further biochemical experiments verified that GhPLIM1 protein can protect F‐actin against depolymerisation by Lat B. Thus, our data demonstrate that GhPLIM1 functions as an actin binding protein (ABP) in modulating actin filaments in vitro, suggesting that GhPLIM1 may be involved in regulating the actin cytoskeleton required for pollen development in cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号