首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The double-strand DNA break repair pathway, non-homologous DNA end joining (NHEJ), is distinctive for the flexibility of its nuclease, polymerase and ligase activities. Here we find that the joining of ends by XRCC4-ligase IV is markedly influenced by the terminal sequence, and a steric hindrance model can account for this. XLF (Cernunnos) stimulates the joining of both incompatible DNA ends and compatible DNA ends at physiologic concentrations of Mg2+, but only of incompatible DNA ends at higher concentrations of Mg2+, suggesting charge neutralization between the two DNA ends within the ligase complex. XRCC4-DNA ligase IV has the distinctive ability to ligate poly-dT single-stranded DNA and long dT overhangs in a Ku- and XLF-independent manner, but not other homopolymeric DNA. The dT preference of the ligase is interesting given the sequence bias of the NHEJ polymerase. These distinctive properties of the XRCC4-DNA ligase IV complex explain important aspects of its in vivo roles.  相似文献   

2.
DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ.  相似文献   

3.
DNA ligases catalyse the joining of DNA single- and double-strand breaks. Saccharomyces cerevisiae Cdc9p is a homologue of mammalian DNA ligase I and is required for DNA replication, recombination and single-strand break repair. The other yeast ligase, Lig4p/Dnl4p, is a homologue of mammalian DNA ligase IV, and functions in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair [1] [2] [3] [4]. Lig4p interacts with Lif1p, the yeast homologue of the human ligase IV-associated protein, XRCC4 [5]. This interaction takes place through the carboxy-terminal domain of Lig4p and is required for Lig4p stability. We show that the carboxy-terminal interaction region of Lig4p is necessary for NHEJ but, when fused to Cdc9p, is insufficient to confer NHEJ function to Cdc9p. Also, Lif1p stimulates the in vitro catalytic activity of Lig4p in adenylation and DNA ligation. Nevertheless, Lig4p is inactive in NHEJ in the absence of Lif1p in vivo, even when Lig4p is stably expressed. We show that Lif1p binds DNA in vitro and, through in vivo cross-linking and chromatin immuno precipitation assays, demonstrate that it targets Lig4p to chromosomal DNA double-strand breaks. Furthermore, this targeting requires another key NHEJ protein, Ku.  相似文献   

4.
XRCC4 and DNA ligase IV form a complex that is essential for the repair of all double-strand DNA breaks by the nonhomologous DNA end joining pathway in eukaryotes. We find here that human XRCC4:DNA ligase IV can ligate two double-strand DNA ends that have fully incompatible short 3' overhang configurations with no potential for base pairing. Moreover, at DNA ends that share 1-4 annealed base pairs, XRCC4:DNA ligase IV can ligate across gaps of 1 nt. Ku can stimulate the joining, but is not essential when there is some terminal annealing. Polymerase mu can add nucleotides in a template-independent manner under physiological conditions; and the subset of ends that thereby gain some terminal microhomology can then be ligated. Hence, annealing at sites of microhomology is very important, but the flexibility of the ligase complex is paramount in nonhomologous DNA end joining. These observations provide an explanation for several in vivo observations that were difficult to understand previously.  相似文献   

5.
Low levels of DNA ligases III and IV sufficient for effective NHEJ   总被引:1,自引:0,他引:1  
Cells of higher eukaryotes rejoin double strand breaks (DSBs) in their DNA predominantly by a non-homologous DNA end joining (NHEJ) pathway that utilizes the products of DNA-PKcs, Ku, LIG4, XRCC4, XLF/Cernunnos, Artemis as well as DNA polymerase lambda (termed D-NHEJ). Mutants with defects in these proteins remove a large proportion of DSBs from their genome utilizing an alternative pathway of NHEJ that operates as a backup (B-NHEJ). While D-NHEJ relies exclusively on DNA ligase IV, recent work points to DNA ligase III as a component of B-NHEJ. Here, we use RNA interference (RNAi) to further investigate the activity requirements for DNA ligase III and IV in the pathways of NHEJ. We report that 70-80% knock down of LIG3 expression has no detectable effect on DSB rejoining, either in D-NHEJ proficient cells, or in cells where D-NHEJ has been chemically or genetically compromised. Surprisingly, also LIG4 knock down has no effect on repair proficient cells, but inhibits DSB rejoining in a radiosensitive cell line with a hypomorphic LIG4 mutation that severely compromises its activity. The results suggest that complete coverage for D-NHEJ or B-NHEJ is afforded by very low ligase levels and demonstrate residual end joining by DNA ligase IV in cells of patients with mutations in LIG4.  相似文献   

6.
McVey M  Radut D  Sekelsky JJ 《Genetics》2004,168(4):2067-2076
Repair of DNA double-strand breaks can occur by either nonhomologous end joining or homologous recombination. Most nonhomologous end joining requires a specialized ligase, DNA ligase IV (Lig4). In Drosophila melanogaster, double-strand breaks created by excision of a P element are usually repaired by a homologous recombination pathway called synthesis-dependent strand annealing (SDSA). SDSA requires strand invasion mediated by DmRad51, the product of the spn-A gene. In spn-A mutants, repair proceeds through a nonconservative pathway involving the annealing of microhomologies found within the 17-nt overhangs produced by P excision. We report here that end joining of P-element breaks in the absence of DmRad51 does not require Drosophila LIG4. In wild-type flies, SDSA is sometimes incomplete, and repair is finished by an end-joining pathway that also appears to be independent of LIG4. Loss of LIG4 does not increase sensitivity to ionizing radiation in late-stage larvae, but lig4 spn-A double mutants do show heightened sensitivity relative to spn-A single mutants. Together, our results suggest that a LIG4-independent end-joining pathway is responsible for the majority of double-strand break repair in the absence of homologous recombination in flies.  相似文献   

7.
An XRCC4-like factor, called XLF or Cernunnos, was recently identified as another important factor in the non-homologous DNA end joining (NHEJ) process. NHEJ is the major pathway for the repair of double-strand DNA breaks. The similarity in the putative secondary structures of XLF and XRCC4 as well as the association of XLF with XRCC4.DNA ligase IV in vivo suggested a role in the final ligation step of NHEJ. Here, we find that purified XLF directly interacts with purified XRCC4.DNA ligase IV complex and stimulates the ligase complex in a direct assay for ligation activity. Purified XLF has DNA binding activity, but this binding is dependent on DNA length in a manner most consistent with orientation of the C-terminal alpha helices parallel to the DNA helix. To better understand the function of XLF, we purified an XLF mutant (R57G), which was identified in patients with NHEJ deficiency and severe combined immunodeficiency. Surprisingly, the mutant protein retained its ability to stimulate XRCC4.DNA ligase IV but failed to translocate to the nucleus, and this appears to be the basis for the NHEJ defect in this patient.  相似文献   

8.
Nonhomologous end joining is the primary deoxyribonucleic acid (DNA) double-strand break repair pathway in multicellular eukaryotes. To initiate repair, Ku binds DNA ends and recruits the DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-PKcs) forming the holoenzyme. Early end synapsis is associated with kinase autophosphorylation. The XRCC4 (X4)–DNA Ligase IV (LIG4) complex (X4LIG4) executes the final ligation promoted by Cernunnos (Cer)–X4-like factor (XLF). In this paper, using a cell-free system that recapitulates end synapsis and DNA-PKcs autophosphorylation, we found a defect in both activities in human cell extracts lacking LIG4. LIG4 also stimulated the DNA-PKcs autophosphorylation in a reconstitution assay with purified components. We additionally uncovered a kinase autophosphorylation defect in LIG4-defective cells that was corrected by ectopic expression of catalytically dead LIG4. Finally, our data support a contribution of Cer-XLF to this unexpected early role of the ligation complex in end joining. We propose that productive end joining occurs by early formation of a supramolecular entity containing both DNA-PK and X4LIG4–Cer-XLF complexes on DNA ends.  相似文献   

9.
XRCC4 plays a crucial role in the nonhomologous end joining (NHEJ) pathway of DNA double-strand break repair acting as a scaffold protein that recruits other NHEJ proteins to double-strand breaks. Phosphorylation of XRCC4 by protein kinase CK2 promotes a high affinity interaction with the forkhead-associated domain of the end-processing enzyme polynucleotide kinase/phosphatase (PNKP). Here we reveal that unphosphorylated XRCC4 also interacts with PNKP through a lower affinity interaction site within the catalytic domain and that this interaction stimulates the turnover of PNKP. Unexpectedly, CK2-phosphorylated XRCC4 inhibited PNKP activity. Moreover, the XRCC4·DNA ligase IV complex also stimulated PNKP enzyme turnover, and this effect was independent of the phosphorylation of XRCC4 at threonine 233. Our results reveal that CK2-mediated phosphorylation of XRCC4 can have different effects on PNKP activity, with implications for the roles of XRCC4 and PNKP in NHEJ.  相似文献   

10.
Impact of DNA ligase IV on the fidelity of end joining in human cells   总被引:9,自引:5,他引:4  
A DNA ligase IV (LIG4)-null human pre-B cell line and human cell lines with hypomorphic mutations in LIG4 are significantly impaired in the frequency and fidelity of end joining using an in vivo plasmid assay. Analysis of the null line demonstrates the existence of an error-prone DNA ligase IV-independent rejoining mechanism in mammalian cells. Analysis of lines with hypomorphic mutations demonstrates that residual DNA ligase IV activity, which is sufficient to promote efficient end joining, nevertheless can result in decreased fidelity of rejoining. Thus, DNA ligase IV is an important factor influencing the fidelity of end joining in vivo. The LIG4-defective cell lines also showed impaired end joining in an in vitro assay using cell-free extracts. Elevated degradation of the terminal nucleotide was observed in a LIG4-defective line, and addition of the DNA ligase IV–XRCC4 complex restored end protection. End protection by DNA ligase IV was not dependent upon ligation. Finally, using purified proteins, we demonstrate that DNA ligase IV–XRCC4 is able to protect DNA ends from degradation by T7 exonuclease. Thus, the ability of DNA ligase IV–XRCC4 to protect DNA ends may contribute to the ability of DNA ligase IV to promote accurate rejoining in vivo.  相似文献   

11.
Accurate repair of free radical-mediated DNA double-strand breaks by the nonhomologous end joining pathway requires replacement of fragmented nucleotides in the aligned ends by a gap-filling DNA polymerase. Nuclear extracts of human HeLa cells, supplemented with recombinant XRCC4-DNA ligase IV complex (XRCC4/ligase IV), were capable of accurately rejoining model double-strand break substrates with a 1- or 2-base gap, and the gap-filling step was dependent on XRCC4/ligase IV. To determine what polymerase was responsible for gap filling, end joining was examined in the presence of polyclonal antibodies against each of two prime candidate enzymes, DNA polymerases mu and lambda, both of which were present in the extracts. For a DNA substrate with partially complementary 3' overhangs and a 2-base gap, antibodies to polymerase lambda completely eliminated both gap filling and accurate end joining, whereas antibodies to polymerase mu had little effect. Immunodepletion of polymerase lambda, but not polymerase mu, likewise blocked both gap filling and end joining, and both functions could be restored by addition of recombinant polymerase lambda. Recombinant polymerase mu, and a truncated polymerase lambda lacking the Brca1 C-terminal domain, were at least 10-fold less active in restoring gap filling to the immunodepleted extracts, and polymerase beta was completely inactive. The results suggest that polymerase lambda is the primary gap-filling polymerase for accurate nonhomologous end joining, and that the Brca1 C-terminal domain is required for this activity.  相似文献   

12.
Nonhomologous end joining is one of the major pathways by which cells repair double-strand breaks, and the XRCC4-DNA ligase IV complex is required for the ligation step. To better understand the regulation and stability of XRCC4 and DNA ligase IV, we investigated the ubiquitination status of these two proteins. We identified a predominantly monoubiquitinated form of XRCC4, and higher molecular weight forms of ubiquitinated XRCC4 were detected in lower abundance. In response to etoposide-induced DNA damage, ubiquitinated XRCC4 became more pronounced and was additionally phosphorylated. We confirmed that DNA ligase IV is unstable in the absence of XRCC4, with a half-life of approximately 30-90 min. Unlike XRCC4, we did not detect ubiquitinated forms of DNA ligase IV, and we found that the presence of XRCC4 stabilized DNA ligase IV more significantly than proteasome inhibitors. Monoubiquitination of XRCC4 may play a critical role in the regulation of nonhomologous end joining.  相似文献   

13.
S H Teo  S P Jackson 《The EMBO journal》1997,16(15):4788-4795
DNA ligases catalyse the joining of single and double-strand DNA breaks, which is an essential final step in DNA replication, recombination and repair. Mammalian cells have four DNA ligases, termed ligases I-IV. In contrast, other than a DNA ligase I homologue (encoded by CDC9), no other DNA ligases have hitherto been identified in Saccharomyces cerevisiae. Here, we report the identification and characterization of a novel gene, LIG4, which encodes a protein with strong homology to mammalian DNA ligase IV. Unlike CDC9, LIG4 is not essential for DNA replication, RAD52-dependent homologous recombination nor the repair of UV light-induced DNA damage. Instead, it encodes a crucial component of the non-homologous end-joining (NHEJ) apparatus, which repairs DNA double-strand breaks that are generated by ionizing radiation or restriction enzyme digestion: a function which cannot be complemented by CDC9. Lig4p acts in the same DNA repair pathway as the DNA end-binding protein Ku. However, unlike Ku, it does not function in telomere length homeostasis. These findings indicate diversification of function between different eukaryotic DNA ligases. Furthermore, they provide insights into mechanisms of DNA repair and suggest that the NHEJ pathway is highly conserved throughout the eukaryotic kingdom.  相似文献   

14.
Deshpande RA  Wilson TE 《DNA Repair》2007,6(10):1507-1516
The nonhomologous end joining (NHEJ) pathway of double-strand break repair depends on DNA ligase IV and its interacting partner protein XRCC4 (Lif1 in yeast). A third yeast protein, Nej1, interacts with Lif1 and supports NHEJ, similar to the distantly related mammalian Nej1 orthologue XLF (also known as Cernunnos). XRCC4/Lif1 and XLF/Nej1 are themselves related and likely fold into similar coiled-coil structures, which suggests many possible modes of interaction between these proteins. Using yeast two-hybrid and co-precipitation methods we examined these interactions and the protein domains required to support them. Results suggest that stable coiled-coil homodimers are a predominant form of XLF/Nej1, just as for XRCC4/Lif1, but that similar heterodimers are not. XLF-XRCC4 and Nej1-Lif1 interactions were instead mediated independently of the coiled coil, and by different regions of XLF and Nej1. Specifically, the globular head of XRCC4/Lif1 interacted with N- and C-terminal domains of XLF and Nej1, respectively. Direct interactions between XLF/Nej1 and DNA ligase IV were also observed, but again appeared qualitatively different than the stable coiled-coil-mediated interaction between XRCC4/Lif1 and DNA ligase IV. The implications of these findings for DNA ligase IV function are considered in light of the evolutionary pattern in the XLF/XRCC4 and XLF/Nej1 family.  相似文献   

15.
The XRCC4 protein is of critical importance for the repair of broken chromosomal DNA by non-homologous end joining (NHEJ). The absence of XRCC4 abolishes chromosomal NHEJ almost completely. One reason for this severe phenotype is that XRCC4 binds and modulates the stability and activity of the NHEJ-specific ligase, DNA ligase IV. XRCC4 in solution is in equilibrium between the dimeric and tetrameric forms. Previous structural studies have shown that the interface between dimers is located in the same region as that implicated in DNA ligase IV interaction. With the use of equilibrium sedimentation analysis, we show here that only the XRCC4 dimer can associate with DNA ligase IV, forming a monodisperse complex of 2:1 stoichiometry in solution. In addition, physical analysis of XRCC4/DNA ligase IV complex formation, combined with mutational analysis of XRCC4, indicates that tetramerization and DNA ligase IV binding are mutually exclusive. We propose that the putative function of the XRCC4 tetramer is distinct from its DNA ligase IV-associated function.  相似文献   

16.
Using semi-quantitative PCR-based approach, we have shown that the breakpoint cluster region of the AML1 gene was associated with the nuclear matrix. We have demonstrated that inhibition of topoisomerase II by etoposide stimulates the appearance of histone gammaH2AX foci, an indicator for the presence of DNA double-strand breaks. Furthermore, the major part of these foci was associated with the nuclear matrix. We also visualized nuclear matrix--associated multiprotein complexes involved in topoisomerase II--induced DNA double-strand break repair. Colocalization studies have demonstrated that these complexes included the principal components of the non-homologous end joining repair system (Ku80, DNA-PKcs and DNA ligase IV). Thus, it is reasonable to suggest that the non-homologous DNA end joining is a possible mechanism of topoisomerase II--induced chromosomal rearrangements.  相似文献   

17.
DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair.  相似文献   

18.
The ligation of DNA double-strand breaks in the process of non-homologous end-joining (NHEJ) is accomplished by a heterodimeric enzyme complex consisting of DNA ligase IV and an associated non-catalytic factor. This DNA ligase also accounts for the fatal joining of unprotected telomere ends. Hence, its activity must be tightly controlled. Here, we describe interactions of the DNA ligase IV-associated proteins Lif1p and XRCC4 of yeast and human with the putatively orthologous G-patch proteins Ntr1p/Spp382p and NTR1/TFIP11 that have recently been implicated in mRNA splicing. These conserved interactions occupy the DNA ligase IV-binding sites of Lif1p and XRCC4, thus preventing the formation of an active enzyme complex. Consistently, an excess of Ntr1p in yeast reduces NHEJ efficiency in a plasmid ligation assay as well as in a chromosomal double-strand break repair (DSBR) assay. Both yeast and human NTR1 also interact with PinX1, another G-patch protein that has dual functions in the regulation of telomerase activity and telomere stability, and in RNA processing. Like PinX1, NTR1 localizes to telomeres and associates with nucleoli in yeast and human cells, suggesting a function in localized control of DSBR.  相似文献   

19.
Rejoining of single- and double-strand breaks (DSBs) introduced in DNA during replication, recombination, and DNA damage is catalysed by DNA ligase enzymes. Eukaryotes possess multiple DNA ligase enzymes, each having distinct roles in cellular metabolism. Double-strand breaks in DNA, which can occur spontaneously in the cell or be induced experimentally by gamma-irradiation, represent one of the most serious threats to genomic integrity. Non-homologous end joining (NHEJ) rather than homologous recombination is the major pathway for repair of DSBs in organisms with complex genomes, including humans and plants. DNA ligase IV in Saccharomyces cerevisiae and humans catalyses the final step in the NHEJ pathway of DSB repair. In this study we identify an Arabidopsis thaliana homologue (AtLIG4) of human and S. cerevisiae DNA ligase IV which is shown to encode an ATP-dependent DNA ligase with a theoretical molecular mass of 138 kDa and 48% similarity in amino-acid sequence to the human DNA ligase IV. Yeast two-hybrid analysis demonstrated a strong interaction between A. thaliana DNA ligase IV and the A. thaliana homologue of the human DNA ligase IV-binding protein XRCC4. This interaction is shown to be mediated via the tandem BRCA C-terminal domains of A. thaliana DNA ligase IV protein. Expression of AtLIG4 is induced by gamma-irradiation but not by UVB irradiation, consistent with an in vivo role for the A. thaliana DNA ligase IV in DSB repair.  相似文献   

20.
DNA joining enzymes play an essential role in the maintenance of genomic integrity and stability. Three mammalian genes encoding DNA ligases, LIG1, LIG3 and LIG4, have been identified. Since DNA ligase II appears to be derived from DNA ligase III by a proteolytic mechanism, the three LIG genes can account for the four biochemically distinct DNA ligase activities, DNA ligases I, II, III and IV, that have been purified from mammalian cell extracts. It is probable that the specific cellular roles of these enzymes are determined by the proteins with which they interact. The specific involvement of DNA ligase I in DNA replication is mediated by the non-catalytic amino-terminal domain of this enzyme. Furthermore, DNA ligase I participates in DNA base excision repair as a component of a multiprotein complex. Two forms of DNA ligase III are produced by an alternative splicing mechanism. The ubiqitously expressed DNA ligase III-α forms a complex with the DNA single-strand break repair protein XRCC1. In contrast, DNA ligase III-β, which does not interact with XRCC1, is only expressed in male meiotic germ cells, suggesting a role for this isoform in meiotic recombination. At present, there is very little information about the cellular functions of DNA ligase IV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号