首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
《The Journal of cell biology》1996,135(5):1239-1248
Formation of non-clathrin-coated vesicles requires the recruitment of several cytosolic factors to the Golgi membrane. To identify membrane proteins involved in this budding process, a highly abundant type I transmembrane protein (p23) was isolated from mammalian Golgi-derived COPI-coated vesicles, and its cDNA was cloned and sequenced. It belongs to the p24 family of proteins involved in the budding of transport vesicles (Stamnes, M.A., M.W. Craighead, M.H. Hoe, N. Lampen, S. Geromanos, P. Tempst, and J.E. Rothman. 1995. Proc. Natl. Acad. Sci. USA. 92:8011-8015). p23 consists of a large NH2-terminal luminal domain and a short COOH-terminal cytoplasmic tail (-LRRFFKAKKLIE-CO2-) that shows similarity, but not identity, with the sequence motif-KKXX-CO2-, known as a signal for retrieval of escaped ER-resident membrane proteins (Jackson, M.R., T. Nilsson, and P.A. Peterson. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:3153-3162; Nilsson, T., M. Jackson, and P.A. Peterson. 1989. Cell. 58:707-718). The cytoplasmic tail of p23 binds to coatomer with similar efficiency as known KKXX motifs. However, the p23 tail differs from the KKXX motif in having an additional motif needed for binding of coatomer. p23 is localized to Golgi cisternae and, during vesicle formation, it concentrates into COPI-coated buds and vesicles. Biochemical analysis revealed that p23 is enriched in vesicles by a factor of approximately 20, as compared with the donor Golgi fraction, and is present in amounts stoichiometric to the small GTP-binding protein ADP-ribosylation factor (ARF) and coatomer. From these data we conclude that p23 represents a Golgi- specific receptor for coatomer involved in the formation of COPI-coated vesicles.  相似文献   

7.
8.
9.
10.
G J Roth  K Titani  L W Hoyer  M J Hickey 《Biochemistry》1986,25(26):8357-8361
Purified human plasma von Willebrand factor (vWf) binds to pepsin-digested monomeric type III collagen in a saturable (KD = 1 X 10(-8) M), specific, and rapid manner with a stoichiometry of approximately 1:15 [vWf subunit (Mr 270,000):collagen trimer (Mr 300,000)]. Two reduced and alkylated CNBr peptides of vWf, termed M11 residues 542-622 and M20 residues 948-998 [Titani, K., Kumar, S., Takio, K., Ericsson, L. H., Wade, R. D., Ashida, K., Walsh, K. A., Chopek, M. W., Sadler, J. E., & Fujikawa, K. (1986) Biochemistry 25, 3171-3184], inhibited vWf binding to collagen. With 125I-vWf (2 X 10(-9) M) as ligand, M11, M20, fragment III (a dimeric, V8 protease, NH2-terminal fragment, Mr 320,000 referenced above), and unlabeled vWf inhibited binding to collagen with EC50 values of 4.8 X 10(-7), 9.4 X 10(-7), 1.1 X 10(-7), and 0.2 X 10(-7) M, respectively. M11 and M20 bind to collagen directly when 125I-labeled peptides are used as ligands. Other CNBr fragments of vWf were less effective as inhibitors (5-fold or less) and bound less avidly to collagen (5-fold or less) compared to M11 and M20. A murine anti-human vWf monoclonal antibody (MR5), which blocks the binding of vWf to collagen, bound selectively to both M11 and M20 when tested in an enzyme-linked immunoadsorbent assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Nuclear factor I is a 47-kd protein, isolated from nuclei of HeLa cells, that binds specifically to the inverted terminal repeat of the adenovirus (Ad) DNA and enhances Ad DNA replication in vitro. We have studied the DNA sequence specificity of nuclear factor I binding using cloned terminal fragments of the Ad2 genome and a set of deletion mutants. Binding of nuclear factor I protects nucleotides 19-42 of Ad2 DNA against DNase I digestion. Filter binding assays show that deletion of the first 23 nucleotides does not impair binding while a deletion of 24 nucleotides reduces binding severely. However, binding studies on Ad12 DNA indicate that nucleotide 24 can be mutated. Fragments containing the first 40 bp are bound normally while the first 38 bp are insufficient to sustain binding. Taken together, these results indicate that the minimal recognition site of nuclear factor I contains 15 or 16 nucleotides, located from nucleotide 25 to nucleotide 39 or 40 of the Ad2 DNA. This site contains two of the four conserved nucleotide sequences in this region. Sequences flanking the minimal recognition site may reduce the binding affinity of nuclear factor I. In accordance with these binding studies, DNA replication of a fragment that carries the sequence of the terminal 40 nucleotides of Ad2 at one molecular end is enhanced by nuclear factor I in an in vitro replication system.  相似文献   

12.
13.
14.
The adenovirus-2 major late promoter (Ad2MLP) upstream element (Ad2MLP-UE) contains a sequence of interrupted dyad symmetry. By inverting this element we have found that it functions in a bidirectional manner both in vivo and in vitro. Footprinting and binding kinetics studies have demonstrated that both orientations of the upstream element bind the sequence-specific upstream factor (UEF) in a similar fashion. These data strongly suggest that the dyad symmetric sequence is sufficient for fully functional binding of the UEF. Binding studies of the UEF to the Ad2MLP-UE indicate that, contrary to prokaryotic palindromic promoter elements which bind multimers of specific factors, the entire Ad2MLP dyad symmetric upstream element binds a single monomeric UEF molecule.  相似文献   

15.
16.
17.
Immunoglobulin binding by the regular surface array of Aeromonas salmonicida   总被引:12,自引:0,他引:12  
The cell surface of Aeromonas salmonicida is covered by a regular surface array composed of a single species of protein, the A-protein (Phipps, B. M., Trust, T. J., Ishiguro, E. E., and Kay, W. W. (1983) Biochemistry 22, 2934-2939). The array, known as the A-layer, is the key virulence factor for this organism. Cells containing the A-layer specifically bound rabbit IgG and human IgM with high affinity (KD = 1.0 X 10(-6) M and 3.3 X 10(-6) M, respectively), but neither isogenic A-protein-deficient strains nor an Aeromonas hydrophila strain also possessing a regular surface array had binding activity. Selective removal of A-protein at pH 2.2 inactivated IgG binding. Structurally intact IgG was requisite for binding since both Fab and Fc fragments were inactive. Aeromonas A-protein did not share the same IgG binding sites as Staphylococcus aureus protein A. Purified A-protein bound IgG only weakly, but reassembled A-layer regained binding activity. Protein modification and perturbation of the A-layer indicated that no single amino acid residue was critical for binding, and that the binding site consisted of a native arrangement of at least four A-protein monomers in the layer.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号