首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we investigated the involvement of calpains in the neurotoxicity induced by short-term exposure to kainate (KA) in non-desensitizing conditions of AMPA receptor activation (cyclothiazide present, CTZ), in cultured rat hippocampal neurons. The calpain inhibitor MDL28170 had a protective effect in cultures treated with KA plus CTZ (p < 0.01), preventing the decrease in MTT reduction caused by exposure to KA (p < 0.001). Caspase inhibition by ZVAD-fmk was not neuroprotective against the toxic effect of KA. At 1 h after treatment, we could already observe significantly increased calpain activity, which was prevented by MDL 28170 and NBQX. Western blot analysis of calpain substrates, GluR1, neuronal nitric oxide synthase (nNOS) and nonerythroid spectrin (fodrin), showed a time-dependent and MDL 28170-sensitive proteolysis of these proteins. This effect was due to calpains, but not caspases, since ZVAD-fmk was ineffective in preventing proteolytic events. Breakdown products of fodrin (BDPs) were detected as early as 15 min after exposure to KA. Overall, these results show early activation of calpains following activation of AMPA receptors as well as compromise of neuronal survival, likely due to proteolytic events that affect proteins involved in neuronal signaling.  相似文献   

2.
Primary hippocampal neuronal cultures exhibited a concentration- and time-dependent loss of cells when exposed to ethanol (EtOH). EtOH-induced neurotoxicity was attenuated by 2,4-dimethoxybenzilidene anabaseine (DMXB) which selectively activates alpha7 nicotinic receptors in a concentration-dependent manner. We further investigated the mechanisms of the protective effect of DMXB on EtOH- induced neurotoxicity. We found that EtOH decreased the mitochondrial membrane potential and released cytochrome c from mitochondria at neurotoxic concentrations. DMXB (3 microm) attenuated both of these actions in a manner that was in turn blocked with the nicotinic antagonist methyllyconitine (MLA) 100 nm. Neither DMXB nor MLA alone affected these parameters. These results suggest that the neuroprotection conferred by alpha7 nicotinic receptor activation may be mediated, at least in part, through preventing the decrease in the mitochondrial membrane potential and the increase in the release of cytochrome c caused by EtOH.  相似文献   

3.
Free iron has been assumed to potentiate oxygen toxicity by generating reactive oxygen species (ROS) via the iron-catalyzed Haber-Weiss reaction, leading to oxidative stress. ROS-mediated iron cytotoxicity may trigger apoptotic cell death. In the present study, we used iron treatment of organotypic cultures of hippocampal slices to study potential mechanisms involved in iron-induced neuronal damage. Exposure of mature hippocampal slices to ferrous sulfate resulted in concentration- and time-dependent cell death. After iron treatment, markers of ROS formation and lipid peroxidation, i.e. intensity of dichlorofluorescein (DCF) fluorescence and levels of thiobarbiturate reactive substances (TBARS), were significantly increased. Levels of cytochrome c were increased while levels of pro-caspase-9 and pro-caspase-3 were decreased in cytosolic fractions of iron-treated hippocampal slice cultures. Treatment of cultured slices with a synthetic catalytic ROS scavenger, EUK-134, provided between 50 and 70% protection against various parameters of cell damage and markers of oxidative stress. In addition, inhibition of caspase-3 activity by Ac-DEVDcho partially protected cells from iron toxicity. The combination of EUK-134 and Ac-DEVDcho resulted in an almost complete blockade of iron-induced damage. These results indicate that iron elicits cellular damage predominantly by oxidative stress, and that ROS-mediated iron toxicity may involve cytochrome c- and caspase-3-dependent apoptotic pathways.  相似文献   

4.
Mitochondria are involved in excitotoxic damage of nerve cells. Following the breakdown of the calcium-buffering ability of mitochondria, mitochondrial calcium overload induces reactive oxygen species (ROS) bursts that produce free radicals and open permeability transition pores, ultimately leading to neuronal cell death. In the present study, we focused on a mitochondrial antioxidant protein, peroxiredoxin-3 (Prx-3), to investigate the mechanism by which toxic properties of ROS were up-regulated in mitochondria of damaged nerve cells. Immunohistochemical analysis revealed that Prx-3 protein exists in mitochondria of rat hippocampus, whereas we found a significant decrease in Prx-3 mRNA and protein levels associated with an increase in nitrated proteins in the rat hippocampus injured by microinjection of ibotenic acid. Furthermore, in vivo adenoviral gene transfer of Prx-3 completely inhibited protein nitration and markedly reduced gliosis, a post-neuronal cell death event. Since mitochondrial Prx-3 seems to be neuroprotective against oxidative insults, our findings suggest that Prx-3 up-regulation might be a useful novel approach for the management of neurodegenerative diseases.  相似文献   

5.
The molecular mechanisms underlying AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptor-mediated excitotoxicity were characterized in rat oligodendrocyte progenitor cultures. Activation of AMPA receptors, in the presence of cyclothiazide to selectively block desensitization, produced a massive Ca(2+) influx and cytotoxicity which were blocked by the antagonists CNQX and GYKI 52466. A role for free radical generation in oligodendrocyte progenitor cell death was deduced from three observations: (i) treatment with AMPA agonists decreased intracellular glutathione; (ii) depletion of intracellular glutathione with buthionine sulfoximine potentiated cell death; and (iii) the antioxidant N -acetylcysteine replenished intracellular glutathione and protected cultures from AMPA receptor-mediated toxicity. Cell death displayed some characteristics of apoptosis, including DNA fragmentation, chromatin condensation and activation of caspase-3 and c-Jun N-terminal kinase (JNK). A substrate of calpain and caspase-3, alpha-spectrin, was cleaved into characteristic products following treatment with AMPA agonists. In contrast, inhibition of either caspase-3 by DEVD-CHO or calpain by PD 150606 protected cells from excitotoxicity. Our results indicate that overactivation of AMPA receptors causes apoptosis in oligodendrocyte progenitors through mechanisms involving Ca(2+) influx, depletion of glutathione, and activation of JNK, calpain, and caspase-3.  相似文献   

6.
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors.  相似文献   

7.
Overexpression of bcl-2protects neurons from numerous necrotic insults, both in vitro and in vivo. While the bulk of such protection is thought to arise from Bcl-2 blocking cytochrome c release from mitochondria, thereby blocking apoptosis, the protein can target other steps in apoptosis, and can protect against necrotic cell death as well. There is evidence that these additional actions may be antioxidant in nature, in that Bcl-2 has been reported to protect against generators of reactive oxygen species (ROS), to increase antioxidant defenses and to decrease levels of ROS and of oxidative damage. Despite this, there are also reports arguing against either the occurrence, or the importance of these antioxidant actions. We have examined these issues in neuron-enriched primary hippocampal cultures, with overexpression of bcl-2 driven by a herpes simplex virus amplicon: (i) Bcl-2 protected strongly against glutamate, whose toxicity is at least partially ROS-dependent. Such protection involved reduction in mitochondrially derived superoxide. Despite that, Bcl-2 had no effect on levels of lipid peroxidation, which is thought to be the primary locus of glutamate-induced oxidative damage; (ii) Bcl-2 was also mildly protective against the pro-oxidant adriamycin. However, it did so without reducing levels of superoxide, hydrogen peroxide or lipid peroxidation; (iii) Bcl-2 protected against permanent anoxia, an insult likely to involve little to no ROS generation. These findings suggest that Bcl-2 can have antioxidant actions that may nonetheless not be central to its protective effects, can protect against an ROS generator without targeting steps specific to oxidative biochemistry, and can protect in the absence of ROS generation. Thus, the antioxidant actions of Bcl-2 are neither necessary nor sufficient to explain its protective actions against these insults in hippocampal neurons.  相似文献   

8.
In this work, we investigated the role of nitric oxide (NO) in neurotoxicity triggered by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation in cultured hippocampal neurons. In the presence of cyclothiazide (CTZ), short-term exposures to kainate (KA; 5 and 15 min, followed by 24-h recovery) decreased cell viability. Both NBQX and d-AP-5 decreased the neurotoxicity caused by KA plus CTZ. Long-term exposures to KA plus CTZ (24 h) resulted in increased toxicity. In short-, but not in long-term exposures, the presence of NO synthase (NOS) inhibitors (l-NAME and 7-NI) decreased the toxicity induced by KA plus CTZ. We also found that KA plus CTZ (15-min exposure) significantly increased cGMP levels. Furthermore, short-term exposures lead to decreased intracellular ATP levels, which was prevented by NBQX, d-AP-5 and NOS inhibitors. Immunoblot analysis revealed that KA induced neuronal NOS (nNOS) proteolysis, gradually lowering the levels of nNOS according to the time of exposure. Calpain, but not caspase-3 inhibitors, prevented this effect. Overall, these results show that NO is involved in the neurotoxicity caused by activation of non-desensitizing AMPA receptors, although to a limited extent, since AMPA receptor activation triggers mechanisms that lead to nNOS proteolysis by calpains, preventing a further contribution of NO to the neurotoxic process.  相似文献   

9.
10.
Polyamines are ubiquitous cations that are essential for cell growth, regeneration and differentiation. Increases in polyamine metabolism have been implicated in several neuropathological conditions, including excitotoxicity. However, the precise role of polyamines in neuronal degeneration is still unclear. To investigate mechanisms by which polyamines could contribute to excitotoxic neuronal death, the present study examined the role of the polyamine interconversion pathway in kainic acid (KA) neurotoxicity using organotypic hippocampal slice cultures. Treatment of cultures with N1,N(2)-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527), an irreversible inhibitor of polyamine oxidase, resulted in a partial but significant neuronal protection, especially in CA1 region. In addition, this pre-treatment also attenuated KA-induced increase in levels of lipid peroxidation, cytosolic cytochrome C release and glial cell activation. Furthermore, pre-treatment with a combination of cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) and MDL 72527 resulted in an additive and almost total neuronal protection against KA toxicity, while the combination of MDL 72527 and EUK-134 (a synthetic catalase/superoxide dismutase mimetic) did not provide additive protection. These data strongly suggest that the polyamine interconversion pathway partially contributes to KA-induced neurodegeneration via the production of reactive oxygen species.  相似文献   

11.
Subcellular trafficking of neuronal receptors is known to play a key role in synaptic development, homeostasis, and plasticity. We have developed a ligand‐targeted and photo‐cleavable probe for delivering a synthetic fluorophore to AMPA receptors natively expressed in neurons. After a receptor is bound to the ligand portion of the probe molecule, a proteinaceous nucleophile reacts with an electrophile on the probe, covalently bonding the two species. The ligand may then be removed by photolysis, returning the receptor to its non‐liganded state while leaving intact the new covalent bond between the receptor and the fluorophore. This strategy was used to label polyamine‐sensitive receptors, including calcium‐permeable AMPA receptors, in live hippocampal neurons from rats. Here, we describe experiments where we examined specificity, competition, and concentration on labeling efficacy as well as quantified receptor trafficking. Pharmacological competition during the labeling step with either a competitive or non‐competitive glutamate receptor antagonist prevented the majority of labeling observed without a blocker. In other experiments, labeled receptors were observed to alter their locations and we were able to track and quantify their movements.

  相似文献   


12.
Chondroitin sulfate (CS) proteoglycans (CSPGs) are the most abundant PGs of the brain extracellular matrix (ECM). Free CS could be released during ECM degradation and exert physiological functions; thus, we aimed to investigate the effects of CS on voltage‐ and current‐clamped rat embryo hippocampal neurons in primary cultures. We found that CS elicited a whole‐cell Na+‐dependent inward current (ICS) that produced drastic cell depolarization, and a cytosolic calcium transient ([Ca2+]c). Those effects were similar to those elicited by α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (AMPA) and kainate, were completely blocked by NBQX and CNQX, were partially blocked by GYKI, and were unaffected by MK801 and D‐APV. Furthermore, ICS and AMPA currents were similarly potentiated by cyclothiazide, a positive allosteric modulator of AMPA receptors. Because CSPGs have been attributed Ca2+ ‐dependent roles, such as neural network development, axon pathfinding, plasticity and regeneration after CNS injury, CS action after ECM degradation could be contributing to the mediation of these effects through its interaction with AMPA and kainate receptors.  相似文献   

13.
《Free radical research》2013,47(10):1296-1307
Abstract

In the present study we investigated the beneficial role of glycine in iron (FeSO4) induced oxidative damage in murine hepatocytes. Exposure of hepatocytes to 20 μM FeSO4 for 3 hours enhanced reactive oxygen species (ROS) generation and induced alteration in biochemical parameters related to hepatic oxidative stress. Investigating cell signalling pathway, we observed that iron (FeSO4) intoxication caused NF-κB activation as well as the phosphorylation of p38 and ERK MAPKs. Iron (FeSO4) administration also disrupted Bcl-2/Bad protein balance, reduced mitochondrial membrane potential, released cytochrome c and induced the activation of caspases and cleavage of PARP protein. Flow cytometric analysis also confirmed that iron (FeSO4) induced hepatocytes death is apoptotic in nature. Glycine (10 mM) supplementation, on the other hand, reduced all the iron (FeSO4) induced apoptotic indices. Combining, results suggest that glycine could be a beneficial agent against iron mediated toxicity in hepatocytes.  相似文献   

14.
Mitochondria are the major ATP producer of the mammalian cell. Moreover, mitochondria are also the main intracellular source and target of reactive oxygen species (ROS) that are continually generated as by-products of aerobic metabolism in human cells. A low level of ROS generated from the respiratory chain was recently proposed to take part in the signaling from mitochondria to the nucleus. Several structural characteristics of mitochondria and the mitochondrial genome enable them to sense and respond to extracellular and intracellular signals or stresses in order to sustain the life of the cell. It has been established that mitochondrial respiratory function declines with age, and that defects in the respiratory chain increase the production of ROS and free radicals in mitochondria. Within a certain concentration range, ROS may induce stress responses of the cell by altering the expression of a number of genes in order to uphold energy metabolism to rescue the cell. However, beyond this threshold, ROS may elicit apoptosis by induction of mitochondrial membrane permeability transition and release of cytochrome c. Intensive research in the past few years has established that mitochondria play a pivotal role in the early phase of apoptosis in mammalian cells. In this article, the role of mitochondria in the determination of life and death of the cell is reviewed on the basis of recent findings gathered from this and other laboratories.  相似文献   

15.
16.
Calcium entry through Ca2+‐permeable AMPA/kainate receptors may activate signaling cascades controlling neuronal development. Using the fluorescent Ca2+‐indicator Calcium Green 1‐AM we showed that the application of kainate or AMPA produced an increase of intracellular [Ca2+] in embryonic chick retina from day 6 (E6) onwards. This Ca2+ increase is due to entry through AMPA‐preferring receptors, because it was blocked by the AMPA receptor antagonist GYKI 52466 but not by the N‐methyl‐D ‐aspartic acid (NMDA) receptor antagonist AP5, the voltage‐gated Ca2+ channel blockers diltiazem or nifedipine, or by the substitution of Na+ for choline in the extracellular solution to prevent the depolarizing action of kainate and AMPA. In dissociated E8 retinal cultures, application of glutamate, kainate, or AMPA reduced the number of neurites arising from these cells. The effect of kainate was prevented by the AMPA/kainate receptor antagonist CNQX and by GYKI 52466 but not by AP5, indicating that the reduction in neurite outgrowth resulted from the activation of AMPA receptors. Blocking Ca2+ influx through L‐type voltage‐gated Ca2+ channels with diltiazem and nifedipine prevented the effect of 10–100 μM kainate but not that of 500 μM kainate. In addition, joro spider toxin‐3, a blocker of Ca2+‐conducting AMPA receptors, prevented the effect of all doses of kainate. Neither GABA, which is depolarizing at this age in the retina, nor the activation of metabotropic glutamate receptors with tACPD mimicked the effects of AMPA receptor activation. Calcium entry via AMPA receptor channels themselves may therefore be important in the regulation of neurite outgrowth in developing chick retinal cells. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 200–211, 2001  相似文献   

17.
The beneficial or detrimental role of gap junction communication in the pathophysiology of brain injury is still controversial. We used co-cultures of hippocampal astrocytes and neurons, where we identified homocellular astrocyte-astrocyte and heterocellular astrocyte-neuron coupling by fluorescence recovery after photobleaching, which was decreased by the gap junction blocker carbenoxolone (CBX). In these cultures, we determined the cell type-specific effects of CBX on the excitotoxic damage caused by N-methyl-D-aspartate (NMDA). We determined in both astrocytes and neurons the influence of CBX, alone or together with NMDA challenge, on cytotoxicity using propidium iodide labeling. CBX alone was not cytotoxic, but CBX treatment differentially accelerated the NMDA-induced cell death in both astrocytes and neurons. In addition, we measured mitochondrial potential using rhodamine 123, membrane potential using the oxonol dye bis(1,3-diethylthiobarbituric acid)trimethine oxonol, cytosolic Ca(2+) level using fura-2, and formation of reactive oxygen species (ROS) using dihydroethidium. CBX alone induced neither an intracellular Ca(2+) rise nor a membrane depolarization. However, CBX elicited a mitochondrial depolarization in both astrocytes and neurons and increased the ROS formation in neurons. In contrast, NMDA caused a membrane depolarization in neurons, coinciding with intracellular Ca(2+) rise, but neither mitochondrial depolarization nor ROS production seem to be involved in NMDA-mediated cytotoxicity. Pre-treatment with CBX accelerated the NMDA-induced membrane depolarization and prevented the repolarization of neurons after the NMDA challenge. We hypothesize that these effects are possibly mediated via blockage of gap junctions, and might be involved in the mechanism of CBX-induced acceleration of excitotoxic cell death, whereas the CBX-induced mitochondrial depolarization and ROS formation are not responsible for the increase in cytotoxicity. We conclude that both in astrocytes and neurons gap junctions provide protection against NMDA-induced cytotoxicity.  相似文献   

18.
It has been claimed that glutamate excitotoxicity might have a role in the pathogenesis of several retinal degenerative diseases, including glaucoma and diabetic retinopathy. Neuropeptide Y (NPY) has neuroprotective properties against excitotoxicity in the hippocampus, through the activation of Y1, Y2 and/or Y5 receptors. The principal objective of this study is to investigate the potential protective role of NPY against glutamate-induced toxicity in rat retinal cells (in vitro and in an animal model), unraveling the NPY receptors and intracellular mechanisms involved. Rat retinal neural cell cultures were prepared from newborn Wistar rats (P3-P5) and exposed to glutamate (500 μM) for 24 h. Necrotic cell death was evaluated by propidium iodide (PI) assay and apoptotic cell death using TUNEL and caspase-3 assays. The cell types present in culture were identified by immunocytochemistry. The involvement of NPY receptors was assessed using selective agonists and antagonists. Pre-treatment of cells with NPY (100 nM) inhibited both necrotic cell death (PI-positive cells) and apoptotic cell death (TUNEL-positive cells and caspase 3-positive cells) triggered by glutamate, with the neurons being the cells most strongly affected. The activation of NPY Y2, Y4 and Y5 receptors inhibited necrotic cell death, while apoptotic cell death was only prevented by the activation of NPY Y5 receptor. Moreover, NPY neuroprotective effect was mediated by the activation of PKA and p38K. In the animal model, NPY (2.35 nmol) was intravitreally injected 2 h before glutamate (500 nmol) injection into the vitreous. The protective role of NPY was assessed 24 h after glutamate (or saline) injection by TUNEL assay and Brn3a (marker of ganglion cells) immunohistochemistry. NPY inhibited the increase in the number of TUNEL-positive cells and the decrease in the number of Brn3a-positive cells induced by glutamate. In conclusion, NPY and NPY receptors can be considered potential targets to treat retinal degenerative diseases, such as glaucoma and diabetic retinopathy.  相似文献   

19.
Recent research has implicated nitric oxide (NO) in the induction of the hypersensitive response (HR) during plant-pathogen interactions. Here we demonstrate that Arabidopsis suspension cultures generate elevated levels of NO in response to challenge by avirulent bacteria, and, using NO donors, show that these elevated levels of NO are sufficient to induce cell death in Arabidopsis cells independently of reactive oxygen species (ROS). We also provide evidence that NO-induced cell death is a form of programmed cell death (PCD), requiring gene expression, and has a number of characteristics of PCD of mammalian cells: NO induced chromatin condensation and caspase-like activity in Arabidopsis cells, while the caspase-1 inhibitor, Ac-YVAD-CMK, blocked NO-induced cell death. A well-established second messenger mediating NO responses in mammalian cells is cGMP, produced by the enzyme guanylate cyclase. A specific inhibitor of guanylate cyclase blocked NO-induced cell death in Arabidopsis cells, and this inhibition was reversed by the cell-permeable cGMP analogue, 8Br-cGMP, although 8Br-cGMP alone did not induce cell death or potentiate NO-induced cell death. This suggests that cGMP synthesis is required but not sufficient for NO-induced cell death in Arabidopsis. In-gel protein kinase assays showed that NO activates a potential mitogen-activated protein kinase (MAPK), although a specific inhibitor of mammalian MAPK activation, PD98059, which blocked H2O2-induced cell death, did not inhibit the effects of NO.  相似文献   

20.
Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cell population of considerable interest as a source of cells for neural tissue regeneration strategies, generate a high amount of reactive oxygen species, and when associated with a degradable biomaterial, may be impacted by released lactic acid. In this work, the effect of lactic acid on a neural cell population containing proliferative neural precursor cells was examined in monolayer culture. Lactic acid was found to scavenge exogenously added free radicals produced in the presence of either hydrogen peroxide or a photoinitiator (I2959) commonly utilized in the preparation of photopolymerizable biomaterials. In addition to its effect on exogenously added free radicals, lactic acid reduced intracellular redox state, increased the proliferation of the cell population, and modified the cell composition. The findings of this study provide insight into the role that lactic acid plays naturally on developing neural cells and are also of interest to biomaterials scientists that are focused on the development of degradable lactic‐acid‐based polymers for cell culture devices. The effect of lactic acid on other cell populations may differ and should be characterized to best understand how cells function in degradable cell culture devices. Biotechnol. Bioeng. 2009;103: 1214–1223. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号