首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
L. Miesel  A. Segall    J. R. Roth 《Genetics》1994,137(4):919-932
Homologous sequences placed in inverse order at particular separated sites in the bacterial chromosome (termed ``permissive') can recombine to form an inversion of the intervening chromosome segment. When the same repeated sequences flank other chromosome segments (``non-permissive'), recombination occurs but the expected inversion rearrangement is not found among the products. The failure to recover inversions of non-permissive chromosomal segments could be due to lethal effects of the final rearrangement. Alternatively, local chromosomal features might pose barriers to reciprocal exchanges between sequences at particular sites and could thereby prevent formation of inversions of the region between such sites. To distinguish between these two possibilities, we have constructed inversions of two non-permissive intervals by means of phage P22-mediated transduction crosses. These crosses generate inversions by simultaneous incorporation of two transduced fragments, each with a sequence that forms one join-point of the final inversion. We constructed inversions of the non-permissive intervals trp ('34) to his ('42) and his ('42) to cysA ('50). Strains with the constructed inversions are viable and grow normally. These results show that our previous failure to detect formation of these inversions by recombination between chromosomal sequences was not due to lethal effects of the final rearrangement. We infer that the ``non-permissive' character of some chromosomal segments reflects the inability of the recombination system to perform the needed exchanges between inverse order sequences at particular sites. Apparently these mechanistic problems were circumvented by the transductional method used here to direct inversion formation.  相似文献   

2.
The Cin recombinase is known to mediate DNA inversion between two wild-type cix sites flanking genetic determinants for the host range of bacteriophage P1. Cin can also act with low frequency at secondary (or quasi) sites (designated cixQ) that have lower homology to either wild-type site. An inversion tester sequence able to reveal novel operon fusions was integrated into the Escherichia coli chromosome, and the Cin recombinase was provided in trans. Among a total of 13 Cin-mediated inversions studied, three different cixQ sites had been used. In two rearranged chromosomes, the breakpoints of the inversions were mapped to cixQ sites in supB and ompA, representing inversions of 109 and 210 kb, respectively. In the third case, a 2.1-kb inversion was identified at a cixQ site within the integrated sequences. This derivative itself was a substrate for a second inversion of 1.5 kb between the remaining wild-type cix and still another cixQ site, thus resembling a reversion. In analogy to that which is known from DNA inversion on plasmids, homology of secondary cix sites to wild-type recombination sites is not a strict requirement for inversion to occur on the chromosome. The chromosomal rearrangements which resulted from these Cin-mediated inversions were quite stable and suffered no growth disadvantage compared with the noninverted parental strain. The mechanistic implications and evolutionary relevance of these findings are discussed.  相似文献   

3.
4.
A huge amount of data seem to confirm the adaptive value of inversions in Drosophila. The inhibition of recombination in heterokaryotypes mediated by inversions seems fundamental in maintaining their adaptive role. This study shows that recombination is highly suppressed in Drosophila subobscura because of chromosomal inversions, not only inside the inversions but also outside them. It seems that the region outside the inversion where recombination is inhibited is asymmetrical and independent of the inversion length. Despite the difficulty of crossovers taking place near inversion breakpoints, the only two recombination events detected inside inversions were located close to the breakpoint. Thus, selection could be largely responsible for the recombination reduction maintaining sets of adaptive alleles inside the inverted region. Heterokaryotype descendants were always in higher frequency than inbred or outbred homokaryotypes, regardless of the geographical origin of the chromosome, suggesting that chromosomes carrying the same arrangement, although with a different set of alleles for neutral markers, could be submitted to the same selection processes.  相似文献   

5.
6.
W. B. Eggleston  N. R. Rim    J. K. Lim 《Genetics》1996,144(2):647-656
The structure of chromosomal inversions mediated by hobo transposable elements in the Uc-1 X chromosome was investigated using cytogenetic and molecular methods. Uc-1 contains a phenotypically silent hobo element inserted in an intron of the Notch locus. Cytological screening identified six independent Notch mutations resulting from chromosomal inversions with one breakpoint at cytological position 3C7, the location of Notch. In situ hybridization to salivary gland polytene chromosomes determined that both ends of each inversion contained hobo and Notch sequences. Southern blot analyses showed that both breakpoints in each inversion had hobo-Notch junction fragments indistinguishable in structure from those present in the Uc-1 X chromosome prior to the rearrangements. Polymerase chain reaction amplification of the 12 hobo-Notch junction fragments in the six inversions, followed by DNA sequence analysis, determined that each was identical to one of the two hobo-Notch junctions present in Uc-1. These results are consistent with a model in which hobo-mediated inversions result from homologous pairing and recombination between a pair of hobo elements in reverse orientation.  相似文献   

7.
Inversions are portions of a chromosome where the gene order is reversed relative to a standard reference orientation. Because of reduced levels of recombination in heterokaryotypes, inversions have a potentially important effect on patterns of nucleotide variability in those genomic regions close to, or included in, the inverted fragments. Here we report sequence variation at three anonymous regions (STSs) located at different positions in relation to second-chromosome inversion breakpoints in 29 isochromosomal lines derived from an Argentinean population of Drosophila buzzatii. In agreement with previous findings in Drosophila, gene flux (crossing over and/or gene conversion) between arrangements seems to appreciably increase as we approach the middle sections of inversion 2j, and patterns of nucleotide variability within, as well as genetic differentiation between chromosome arrangements, are comparable to those observed at the molecular marker outside the inverted fragments. On the other hand, nucleotide diversity near the proximal breakpoint of inversion 2j is reduced when contrasted with that found at the other regions, particularly in the case of derived inverted chromosomes. Using the data from the breakpoint, we estimate that the inversion polymorphism is approximately 1.63 N generations old, where N is the effective population size. An excess of low-frequency segregating polymorphisms is detected; mostly in the ancestral 2st arrangement and probably indicating a population expansion that predates the coalescent time of inversion 2j. Heterogeneity in mutation rates between the markers linked to the inversions may be sufficient to explain the different levels of nucleotide diversity observed. When considered in the context of other studies on patterns of variation relative to physical distance to inversion breakpoints, our data appear to be consistent with the conclusion that inversions are unlikely to be "long-lived" balanced polymorphisms.  相似文献   

8.
It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion.  相似文献   

9.
Heterozygotes for pericentric inversions are expected to be semisterile because recombination in the inverted region produces aneuploid gametes. Newly arising pericentric inversions should therefore be quickly eliminated from populations by natural selection. The occasional polymorphism for such inversions and their fixation among closely related species have supported the idea that genetic drift in very small populations can overcome natural selection in the wild. We studied the effect of 7 second-chromosome and 30 third-chromosome pericentric inversions on the fertility of heterokaryotypic Drosophila melanogaster females. Surprisingly, fertility was not significantly reduced in many cases, even when the inversion was quite large. This lack of underdominance is almost certainly due to suppressed recombination in inversion heterozygotes, a phenomenon previously observed in Drosophila. In the large sample of third-chromosome inversions, the degree of underdominance depends far more on the position of breakpoints than on the inversion's length. Analysis of these positions shows that this chromosome has a pair of ``sensitive sites' near cytological divisions 68 and 92: these sites appear to reduce recombination in a heterozygous inversion whose breakpoints are nearby. There may also be ``sensitive sites' near divisions 31 and 49 on the second chromosome. Such sites may be important in initiating synapsis. Because many pericentric inversions do not reduce the fertility of heterozyotes, we conclude that the observed fixation or polymorphism of such rearrangements in nature does not imply genetic drift in very small populations.  相似文献   

10.
To facilitate genetic screens to identify and maintain recessive mutations that map to the short arm of human chromosome 1, we have utilized chromosome engineering to generate two mouse strains that carry large inversions on the distal region of mouse chromosome 4. The inversion intervals are 16 and 22 cM in size together they cover approximately half of chromosome 4. Since recombination between the wild-type and inversion chromosomes does not occur within these inversion intervals, mutant alleles of genes mapping to this region can be identified and maintained. Therefore, these inversion chromosomes work as balancer chromosomes. These inversions have the additional advantage that they are tagged with genes encoding the visible coat color markers tyrosinase and agouti, and therefore the dosage of the inversion chromosome (+/+, Inv/+, Inv/Inv) can be visually recognized. These inversion strains will be extremely useful for mutagenesis screens that focus on functional annotation of human chromosome 1p.  相似文献   

11.
Drosophila subobscura is a paleartic species of the obscura group with a rich chromosomal polymorphism. To further our understanding on the origin of inversions and on how they regain variation, we have identified and sequenced the two breakpoints of a polymorphic inversion of D. subobscura—inversion 3 of the O chromosome—in a population sample. The breakpoints could be identified as two rather short fragments (~300 bp and 60 bp long) with no similarity to any known transposable element family or repetitive sequence. The presence of the ~300‐bp fragment at the two breakpoints of inverted chromosomes implies its duplication, an indication of the inversion origin via staggered double‐strand breaks. Present results and previous findings support that the mode of origin of inversions is neither related to the inversion age nor species‐group specific. The breakpoint regions do not consistently exhibit the lower level of variation within and stronger genetic differentiation between arrangements than more internal regions that would be expected, even in moderately small inversions, if gene conversion were greatly restricted at inversion breakpoints. Comparison of the proximal breakpoint region in species of the obscura group shows that this breakpoint lies in a small high‐turnover fragment within a long collinear region (~300 kb).  相似文献   

12.
Chromosomal inversions allow genetic divergence of locally adapted populations by reducing recombination between chromosomes with different arrangements. Divergence between populations (or hybridization between species) is expected to leave signatures in the neutral genetic diversity of the inverted region. Quantitative expectations for these patterns, however, have not been obtained. Here, we develop coalescent models of neutral sites linked to an inversion polymorphism in two locally adapted populations. We consider two scenarios of local adaptation: selection on the inversion breakpoints and selection on alleles inside the inversion. We find that ancient inversion polymorphisms cause genetic diversity to depart dramatically from neutral expectations. Other situations, however, lead to patterns that may be difficult to detect; important determinants are the age of the inversion and the rate of gene flux between arrangements. We also study inversions under genetic drift, finding that they produce patterns similar to locally adapted inversions of intermediate age. Our results are consistent with empirical observations, and provide the foundation for quantitative analyses of the roles that inversions have played in speciation.  相似文献   

13.
Chromosomal rearrangements are useful genetic and breeding tools but are often difficult to detect and characterize. To more easily identify and define chromosome deletions and inversions, we have used the bacteriophage P1 Cre-lox site-specific recombination system to generate these events in plants. This involves three steps: (i) the introduction of two lox sites into one locus in a plant genome, including one site within a modified Ds transposon; (ii) Ac transposase-mediated transposition of the Ds-lox element to a new locus on the same chromosome; (iii) Cre-mediated site-specific recombination between the two lox sites that bracket a chromosome segment. We report the production of a deletion and three inversion events in tobacco. The utility of chromosomal segments bracketed by lox sites for targeted manipulation and cloning is discussed.  相似文献   

14.
Crossover within a pericentric inversion produces reciprocal recombinant chromosomes that are duplicated/deficient for all chromatin distal to the breakpoints. In view of this fact, a new technique is presented for estimating the frequency of recombination within pericentric inversions. YAC probes were selected from within the q- and p-arm flanking regions of two human inversions, and two-color FISH analysis was performed on sperm from heterozygous inversion carriers. A total of 6,006 sperm were analyzed for chromosome 1 inversion (p31q12), and 3,168 were analyzed for chromosome 8 inversion (p23q22). Both inversions displayed suppression of crossing-over, although the amount of suppression differed between the two inversions. The recombination frequency of 13.1% recorded for chromosome 8 inversion was similar to the frequency of 11.4% previously estimated by the human/hamster-fusion method. For chromosome 1 inversion, the recombination frequency of 0. 4% reported here was below the limits of detection of the fusion technique. The simplicity of the FISH technique and the ease of scoring facilitate analysis of a sample-population size much larger than previously had been possible.  相似文献   

15.
In recent years it has emerged that structural variants have a substantial impact on genomic variation. Inversion polymorphisms represent a significant class of structural variant, and despite the challenges in their detection, data on inversions in the human genome are increasing rapidly. Statistical methods for inferring parameters such as the recombination rate and the selection coefficient have generally been developed without accounting for the presence of inversions. Here we exploit new software for simulating inversions in population genetic data, invertFREGENE, to assess the potential impact of inversions on such methods. Using data simulated by invertFREGENE, as well as real data from several sources, we test whether large inversions have a disruptive effect on widely applied population genetics methods for inferring recombination rates, for detecting selection, and for controlling for population structure in genome-wide association studies (GWAS). We find that recombination rates estimated by LDhat are biased downward at inversion loci relative to the true contemporary recombination rates at the loci but that recombination hotspots are not falsely inferred at inversion breakpoints as may have been expected. We find that the integrated haplotype score (iHS) method for detecting selection appears robust to the presence of inversions. Finally, we observe a strong bias in the genome-wide results of principal components analysis (PCA), used to control for population structure in GWAS, in the presence of even a single large inversion, confirming the necessity to thin SNPs by linkage disequilibrium at large physical distances to obtain unbiased results.  相似文献   

16.
A. Navarro  E. Betran  A. Barbadilla    A. Ruiz 《Genetics》1997,146(2):695-709
A theoretical analysis of the effects of inversions on recombination and gene flux between arrangements caused by gene conversion and crossing over was carried out. Two different mathematical models of recombination were used: the Poisson model (without interference) and the Counting model (with interference). The main results are as follows. (1) Recombination and gene flux are highly site-dependent both inside and outside the inverted regions. (2) Crossing over overwhelms gene conversion as a cause of gene flux in large inversions, while conversion becomes relatively significant in short inversions and in regions around the breakpoints. (3) Under the Counting model the recombination rate between two markers depends strongly on the position of the markers along the inverted segment. Two equally spaced markers in the central part of the inverted segment have less recombination than if they are in a more extreme position. (4) Inversions affect recombination rates in the uninverted regions of the chromosome. Recombination increases in the distal segment and decreases in the proximal segment. These results provide an explanation for a number of observations reported in the literature. Because inversions are ubiquitous in the evolutionary history of many Drosophila species, the effects of inversions on recombination are expected to influence DNA variation patterns.  相似文献   

17.
The human and chimpanzee karyotypes are distinguishable in terms of nine pericentric inversions. According to the recombination suppression model of speciation, these inversions could have promoted the process of parapatric speciation between hominoid populations ancestral to chimpanzees and humans. Were recombination suppression to have occurred in inversion heterozygotes, gene flow would have been reduced, resulting in the accumulation of genetic incompatibilities leading to reproductive isolation and eventual speciation. In an attempt to detect the molecular signature of such events, the sequence divergence of non-coding DNA was compared between humans and chimpanzees. Precise knowledge of the locations of the inversion breakpoints permitted accurate discrimination between inverted and non-inverted regions. Contrary to the predictions of the recombination suppression model, sequence divergence was found to be lower in inverted chromosomal regions as compared to non-inverted regions, albeit with borderline statistical significance. Thus, no signature of recombination suppression resulting from inversion heterozygosity appears to be detectable by analysis of extant human and chimpanzee non-coding DNA. The precise delineation of the inversion breakpoints may nevertheless still prove helpful in identifying potential speciation-relevant genes within the inverted regions.  相似文献   

18.
M. F. Hammer  S. Bliss    L. M. Silver 《Genetics》1991,128(4):799-812
Mouse t haplotypes are distinguished from wild-type forms of chromosome 17 by four nonoverlapping paracentric inversions which span a genetic distance of 20 cM. These inversion polymorphisms are responsible for a 100-200-fold suppression of recombination which maintains the integrity of complete t haplotypes and has led to their divergence from the wild-type chromosomes of four species of house mice within which t haplotypes reside. As evidence for the long period of recombinational isolation, alleles that distinguish all t haplotypes from all wild-type chromosomes have been established at a number of loci spread across the 20-cM variant region. However, a more complex picture emerges upon analysis of other t-associated loci. In particular, "mosaic haplotypes" have been identified that carry a mixture of wild-type and t-specific alleles. To investigate the genetic basis for mosaic chromosomes, we conducted a comprehensive analysis of eight t complex loci within 76 animals representing 10 taxa in the genus Mus, and including 23 previously characterized t haplotypes. Higher resolution restriction mapping and sequence analysis was also performed for alleles at the Hba-ps4 locus. The results indicate that a short tract of DNA was transferred relatively recently across an inversion from a t haplotype allele of Hba-ps4 to the corresponding locus on a wild-type homolog leading to the creation of a new hybrid allele. Several classes of wild-type Hba-ps4 alleles, including the most common form in inbred strains, appear to be derived from this hybrid allele. The accumulated data suggest that a common form of genetic exchange across one of the four t-associated inversions is gene conversion at isolated loci that do not play a role in the transmission ratio distortion phenotype required for t haplotype propagation. The implications of the results pose questions concerning the evolutionary stability of gene complexes within large paracentric inversions and suggest that recombinational isolation may be best established for loci residing within a short distance from inversion breakpoints.  相似文献   

19.
A comparison of the human genome with that of the chimpanzee is an attractive approach to attempts to understand the specificity of a certain phenotype's development. The two karyotypes differ by one chromosome fusion, nine pericentric inversions, and various additions of heterochromatin to chromosomal telomeres. Only the fusion, which gave rise to human chromosome 2, has been characterized at the sequence level. During the present study, we investigated the pericentric inversion by which chimpanzee chromosome 19 differs from human chromosome 17. Fluorescence in situ hybridization was used to identify breakpoint-spanning bacterial artificial chromosomes (BACs) and plasmid artificial chromosomes (PACs). By sequencing the junction fragments, we localized breakpoints in intergenic regions rich in repetitive elements. Our findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation. No addition or deletion of any sequence element was detected at the breakpoints or in the surrounding sequences. Next to the break, at a distance of 10.2-39.1 kb, the following genes were found: NGFR and NXPH3 (on human chromosome 17q21.3) and GUC2D and ALOX15B (on human chromosome 17p13). The inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes.  相似文献   

20.
Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome associated with genetic or epigenetic alterations in one of two imprinted domains on chromosome 11p15.5. Rarely, chromosomal translocations or inversions of chromosome 11p15.5 are associated with BWS but the molecular pathophysiology in such cases is not understood. In our series of 3 translocation and 2 inversion patients with BWS, the chromosome 11p15.5 breakpoints map within the centromeric imprinted domain, 2. We hypothesized that either microdeletions/microduplications adjacent to the breakpoints could disrupt genomic sequences important for imprinted gene regulation. An alternate hypothesis was that epigenetic alterations of as yet unknown regulatory DNA sequences, result in the BWS phenotype. A high resolution Nimblegen custom microarray was designed representing all non-repetitive sequences in the telomeric 33 Mb of the short arm of human chromosome 11. For the BWS-associated chromosome 11p15.5 translocations and inversions, we found no evidence of microdeletions/microduplications. DNA methylation was also tested on this microarray using the HpaII tiny fragment enrichment by ligation-mediated PCR (HELP) assay. This high-resolution DNA methylation microarray analysis revealed a gain of DNA methylation in the translocation/inversion patients affecting the p-ter segment of chromosome 11p15, including both imprinted domains. BWS patients that inherited a maternal translocation or inversion also demonstrated reduced expression of the growth suppressing imprinted gene, CDKN1C in Domain 2. In summary, our data demonstrate that translocations and inversions involving imprinted domain 2 on chromosome 11p15.5, alter regional DNA methylation patterns and imprinted gene expression in cis, suggesting that these epigenetic alterations are generated by an alteration in "chromatin context".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号