首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F R Bryant  S J Benkovic 《Biochemistry》1979,18(13):2825-2828
The hydrolysis reaction of ATP alpha S by snake venom phosphodiesterase is highly specific for the B diastereomer and proceeds with 88% retention of configuration at phosphorus. Since this enzyme also catalyzes the hydrolysis of the S enantimoer of O-p-nitrophenyl phenylphosphonothioate, the absolute configuration at A alpha of ATP alpha S (B) is assigned as the R configuration provided the two substrates are processed identically. A mechanism for the hydrolysis reactions catalzyed by the venom phosphodiesterase involving at least a single covalent phosphoryl-enzyme intermediate is in accord with this result.  相似文献   

2.
4-Nitrophenyl and 2-napthyl monoesters of phenylphosphonic acid have been synthesized, and an enzyme catalyzing their hydrolysis was resolved from alkaline phosphatase of a commerical calf intestinal alkaline phosphatase preparation by extensive ion-exchange chromatography, chromatography on L-phenylalanyl-Sepharose with a decreasing gradient of (NH4) 2SO4, and gel filtration. Detergent-solubilized enzyme from fresh bovine intestine was purified after (NH4)2SO4 fractionation by the same technique. The purified enzyme is homogeneous by polyacrylamide gel electrophoresis and sedimentation equilibrium centrifugation. It has a molecular weight of 108,000, contains approximately 21% carbohydrate, and has an amino acid composition considerably different from that reported from alkaline phosphatase from the same tissue. The homogeneous intestinal enzyme, an efficient catalyst of phosphonate ester hydoolysis but not of phosphate monoester hydrolysis, was identified as a 5'-nucleotide phosphodiesterase by its ability to hydrolyze 4-nitrophenyl esters of 5'-TMP but not of 3'-TMP. Also consistent with this identification was the ability of the enzyme to hydrolyze 5'-ATP to 5'-AMP and PPi, NAD+ to 5'-AMP and NMN, TpT to 5'-TMP and thymidine, pApApApA to 5'-AMP, and only the single-stranded portion of tRNA from the 3'-OH end. Snake venom 5'-nucleotide phosphodiesterase also hydrolyzes phosphonate esters, but 3'-nucleotide phosphodiesterase of spleen and cyclic 3',5'-AMP phosphodiesterase do not. Thus, types of phosphodiesterases can be conveniently distinguished by their ability to hydrolyze phosphonate esters. As substrates for 5'-nucleotide phosphodiesterases, phosphonate esters are preferable to the more conventional esters of nucleotides and bis(4-nitrophenyl) phosphate because of their superior stability and ease of synthesis. Furthermore, the rate of hydrolysis of phosphonate esters under saturating conditions is greater than that of the conventional substrates. At substrate concentrations of 1 mM the rates of hydrolysis of phosphonate esters and of nucleotide esters are comparable and both superior to that of bis(4-nitrophenyl) phosphate.  相似文献   

3.
D Green  G Guy  J B Moore 《Life sciences》1977,20(7):1157-1162
Human lung tissue contains phosphodiesterase enzymes capable of hydrolyzing both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP). The cyclic AMP enzyme exhibits three distinct binding affinities for its substrate (apparent Km = 0.4μM, 3μM, and 40μM) while the cyclic GMP enzyme reveals only two affinities (Km = 5μM and 40μM). The pH optima for the cyclic AMP and cyclic GMP phosphodiesterase are similar (pH 7.6–7.8). Both are inhibited by known inhibitors of phosphodiesterase activity (aminophylline, caffeine, and 3-isobutyl-1-methylxanthine). The divalent cations Mg2+ and Mn2+ stimulate cyclic AMP phosphodiesterase activity (in the absence of Mg2+) while Ca2+, Ni2+, and Cu2+ inhibit the enzyme. Histamine and imidazole slightly stimulate cyclic AMP hydrolytic activity. Thus, human lung tissue does contain multiple forms of both the cyclic AMP and cyclic GMP phosphodiesterase which are influenced by a variety of effectors.  相似文献   

4.
M J Lane  G J Thomas 《Biochemistry》1979,18(18):3839-3846
Pseudo-first-order rate constants governing the deuterium exchange of 8-CH groups in guanosine 5'-monophosphate (5'-rGMP) and guanosine 3':5'-monophosphate (cGMP) were determined as a function of temperature in the range 30-80 degrees C by means of laser-Raman spectroscopy. For each guanine nucleotide the logarithm of the rate constant exhibits a strictly linear dependence on reciprocal temperature: i.e., k psi = Ae-Ea/RT with A = 8.84 X 10(14) h-1 and Ea = 24.6 kcal/mol for 5'-rGMP and A = 3.33 X 10(13) h-1 and Ea = 22.2 kcal/mol for cGMP. Exchange of the 8-CH groups in guanine nucleotides is generally 2-3 times more rapid than in adenine nucleotides [cf. g. j. thomas, Jr., & J. Livramento (1975) Biochemistry 14, 5210-5218]. As in the case of adenine nucleotides, cyclic and 5' nucleotides of guanine exchange at markedly different rates at lower temperatures, with exchange in the cyclic nucleotide being the more facile. Each of the guanine nucleotides was prepared in four different isotopic modifications for Raman spectral analysis. The Raman frequency shifts resulting from the various isotopic substitutions have been tabulated, and assignments have been given for most of the observed vibrational frequencies.  相似文献   

5.
Extensive kinetic studies of bovine intestinal 5'-nucleotide phosphodiesterase as a function of pH have confirmed and amplified the catalytic mechanism previously proposed on the basis of isolation of a covalent phosphorylated intermediate (Landt, M., and Butler, L.G. (1978) Biochemistry 17, 4130-4135). An enzyme-ionizing group with apparent pKa = 6.85 controls the rate-determining step. Electrostatic interactions between anionic substrate and two or more ionic groups on the enzyme have a major role in substrate binding. Binding of strongly inhibitory 5'-AMP is controlled by an ionizing group, probably on the enzyme, with pKa less than or equal to 5.9. At pH 6.0, imidazole is a classic uncompetitive inhibitor, in agreement with independent evidence that it stabilizes the covalent intermediate form of the enzyme. KI values for phosphonate analogs, which are competitive inhibitors, indicate that phosphodiesterase binds its products and product analogs more strongly than it binds substrate analogs. Some of the results presented here can be interpreted as indicating that 5'-nucleotide phosphodiesterase is the evolutionary precursor of alkaline phosphatase, with which it has many structural and catalytic properties in common, and which is found in relatively large amounts in the same tissue.  相似文献   

6.
Guanosine cyclic 3',5'-monophosphate (cGMP) dependent protein kinase is inactivated by o-phthalaldehyde. The loss of phosphotransferase activity following treatment with o-phthalaldehyde was rapid, and the second-order rate constant at 25 degrees C and pH 7.3 was 35 M-1 s-1. The inactivation reaction did not follow saturation kinetics. The cGMP-dependent protein kinase was protected from inactivation by its substrates, MgATP and Ser-peptide. Fluorescence excitation and emission spectroscopic data showed that an isoindole derivative was formed following the reaction between cGMP-dependent protein kinase and o-phthalaldehyde. Four moles of isoindole per mole of the cGMP-dependent protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. In the absence of cGMP, the protein kinase lost only 50% of its cGMP binding activity while there was almost a complete loss of its phosphotransferase activity. Studies in the presence of 20 microM cGMP, however, showed that about 2 mol of isoindole groups per mole of the protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. The second-order rate constant for inactivation of cGMP-dependent protein kinase by o-phthalaldehyde in the presence of 20 microM cGMP was 40 M-1 s-1. Fluorescence measurements of samples containing inactivated, iodoacetamide-modified, or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified, cGMP-dependent protein kinase and o-phthalaldehyde showed that the intensity of fluorescence in each case was about 50% of that obtained from unmodified, active cGMP-dependent protein kinase and o-phthalaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
A new cycloimidazole nucleoside, 5-(1 inch -benzamido-1 inch-hydroxymethylene) amino-2', 1 inch-anhydro-1-beta-D-ribofuranosyl-4-imidazolecarboxamide (III) was synthesized by reaction of 5-amino-1-beta-D-ribofuranosyl-4-imidazolecarboxamide (AICA-riboside) with benzoyl isothiocyanate followed by methylation with methyl iodide. The structure of III was elucidated on the basis of its nmr spectra and chemical reactions. Of special interest are reactions of III with various nucleophiles. For example, guanosine (IX) was obtained by amination of III wtih ammonia in 72% yield. Analogous reactions of III with methylamine and dimethylamine gave N2-methylguanosine (X) and N2-dimethylguanosine (XI), respectively. Refluxing of III in alkaline solution afforded xanthosine (VII). The probable mechanism of formation and facile ring-opening of III is also discussed.  相似文献   

10.
The inhibition of globin synthesis in hemin-deficient rabbit reticulocyte lysates is due to the activation of a hemin-controlled translational inhibitor (HCI) that specifically phosphorylates eIF-2 alpha. High concentrations of cAMP (5-10 mM) and GTP (1-2 mM) stimulated the globin synthesis in hemin-deficient lysates when these compounds were added at the initial stage of incubation. The mechanism of the stimulation by cAMP and GTP was studied using hemin-deficient lysates, the N-ethylmaleimide (NEM)-treated HCI-supplemented lysates and a partially purified initiation factor, eIF-2. As the stimulation of globin synthesis by these compounds must be due to the prevention of the inhibition of globin synthesis, or due to the restoration of globin synthesis, or both, the preventive and restorative effects of these compounds were examined. As for the preventive effect, it was observed that a) the activation of HCI in the postribosomal supernatant of reticulocytes was prevented by GTP, but not by cAMP, and b) cAMP and GTP inhibited the phosphorylation of eIF-2 alpha in hemin-deficient lysates. As for the restorative effect of cAMP and GTP, it was observed that c) these compounds restored the globin synthesis and the binding of [35S]Met-tRNAf to the 40S ribosomal subunits, and promoted the dephosphorylation of eIF-2(alpha P), d) the rates of the restored synthesis of globin were lower than the control, and e) cAMP promoted the release of [3H]GDP from the eIF-2(alpha P) X [3H]GDP complex and the formation of eIF-2(alpha P) X eIF-2B complex. Finding (d) indicates that steps involved in the restorative effect of these compounds may not contribute to the stimulation of the globin synthesis in hemin-deficient lysates. The data on the preventive and restorative effects of cAMP and GTP showed that these compounds affected multiple steps. That is, cAMP inhibited the phosphorylation of eIF-2 alpha and promoted both the release of GDP from eIF-2 and the formation of eIF-2(alpha P) X eIF-2B complex, and GTP prevented both the activation of HCI and the phosphorylation of eIF-2 alpha. Though cAMP and GTP affected multiple steps, it is suggested that cAMP stimulates the globin synthesis by inhibiting the phosphorylation of eIF-2 alpha and that GTP stimulates the globin synthesis chiefly by preventing the activation of HCI in hemin-deficient lysates.  相似文献   

11.
12.
Snake venom phosphodiesterase from Crotalusdurissusterrificus and 5′-nucleotide phosphodiesterase from Sinapisalba were incubated with the 1-naphthyl ester of 5′-[methyl-3H]thymidylic acid. After short-time incubation the enzymes were denatured by extraction into phenol and chromatographed on Sephadex G-25. Protein fractions containing radioactivity were collected, dialysed and subjected to ultra-thin-layer isoelectric focussing and autoradiography. The results obtained indicate a hydrolytic course via a covalently-bound intermediate.  相似文献   

13.
14.
The addition of physiological concentrations of either cAMP or cGMP stimulated the release of RNA from isolated prelabeled rat liver nuclei to a fortified cytosol in a cell-free system. The released RNA was shown to be primarily mRNA by its binding to oligo(dT)-cellulose and its sedimentation profile. Treatment of rats with cAMP or cGMP 30 min prior to the preparation of cyclic nucleotides on the cell-free system. Cyclic nucleotides stimulation of RNA release occurred in systems prepared from resting rat liver, Novikoff hepatoma, and Morris hepatoma 5123D, but not the 18-h regenerating liver. The response of the cell-free system to added cyclic nucleotides reflected the in vivo concentration of these substances in the tissues from which the system was prepared. Those with high in vivo levels were not stimulated while those with lower levels did respond to added cyclic nucleotides. Neither cAMP nor cGMP had an appreciable effect on rRNA release.  相似文献   

15.
The stable nucleotide analog guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was found to be a very potent activator of 5-lipoxygenase in cell-free preparations from rat polymorphonuclear (PMN) leukocytes, causing a 10-fold stimulation of arachidonic acid oxidation at concentrations as low as 0.5-1 microM. The enhancement of enzyme activity was not directly related to G protein activation since the effect of GTP gamma S could not be abolished by GDP nor replaced by GTP or guanylyl-imidodiphosphate (up to 100 microM). Furthermore, other phosphorothioate analogs, such as guanosine 5'-O-(2-thiodiphosphate), adenosine 5'-O-(3-thiotriphosphate), adenosine 5'-O-(2-thiodiphosphate), and adenosine 5'-O-thiomonophosphate all stimulated 5-lipoxygenase activity at concentrations of 10 microM or lower. This effect could not be detected with any of the corresponding nucleoside phosphate derivatives. The stimulation of 5-lipoxygenase activity by nucleoside phosphorothioates was observed under conditions where the reaction is highly dependent on exogenous hydroperoxides, such as in the presence of beta-mercaptoethanol or using enzyme preparations pretreated with sodium borohydride or glutathione peroxidase. GTP gamma S stimulated arachidonic acid oxidation by 5-lipoxygenase to the same extent as the activating hydroperoxides but had no effect on the reaction measured in the presence of optimal concentrations of 13-hydroperoxyoctadecadienoic acid (1-5 microM). Finally, sodium thiophosphate, but not sodium phosphate, markedly stimulated 5-lipoxygenase activity with properties similar to those of GTP gamma S. These results indicate that GTP gamma S and other phosphorothioate derivatives have redox properties that can contribute to increase 5-lipoxygenase activity by replacing the effect of hydroperoxides.  相似文献   

16.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP.  相似文献   

17.
Crude extracts of human lung tissue were examined for cyclic adenosine- and guanosine-3',5'-monophosphate (cAMP and cGMP) phosphodiesterase activities. Nonlinear reciprocal plots were observed for each substrate. DEAE-Sephadex chromatography of the extracts revealed four main fractions of activity, which were further purified by Sephadex gel filtration. The phosphodiesterase activity of the resulting individual fractions was partially characterized with respect to substrate specificity, kinetic parameters, apparent molecular weight (gel filtration), thermal stability at 30 and 37 degrees C, effect of the cyclic nucleotide not utilized as substrate, and the possible influence of Ca2+-dependent protein activator. The results indicate that the tissue contains phosphodiesterases with strict specificity and a high apparent affinity for each of the two cyclic nucleotides (the Km values determined were approximately 0.3-0.4 muM). The high affinity cAMP phosphodiesterase activity was enriched in two of the purified fractions; both activities probably represent fragments of the native high affinity cAMP specific enzyme. A third purified phosphodiesterase showed mixed substrate specificity. The Km value recorded for hydrolysis of either substrate with this enzyme was approximately 25 muM. A fourth, irregularly occurring, phosphodiesterase activity also showed mixed substrate specificity. The Km value registered for hydrolysis of either substrate with this fraction was approximately 0.4 muM. There was no evidence for a Ca2+-dependent specific activation by a boiled lung tissue supernatant of any of the purified enzymes.  相似文献   

18.
The biologic roles of guanosine 3',5'-monophosphate (cyclic GMP) and adenosine 3',5'-monophosphate (cyclic AMP) in the secretion of lysosomal enzymes from, and in phagocytosis by, human neurtrophils were studied. Contact between neurophils and particulate immunologic reactants results in both phagocytosis of the particles and secretion of lysosomal enzymes. These cellular events are accompanied by the accumulation of cyclic GMP and require the presence of extracellular caclium. Acetylcholine, pilocarpine, and cyclic GMP enhance, whereas epinephrine, cyclic AMP, and/or dibutyryl cyclic AMP inhibit, both phagocytosis and lysosomal enzyme secretion. The stimulatory action of cholinergic agents and the inhibitory action of epinephrine are accompanied by the accumulation of cyclic GMP and cyclic AMP, respectively, in human neutrophils. The data suggest that cyclic GMP mediates whereas cyclic AMP inhibits the major functions of human neutrophils. Moreover, by virtue of their effects of cyclic nucleotide accumulation, autonomic neurohormones are capable of modulating human neutrophil function.  相似文献   

19.
Partial acylation of only one primary hydroxyl group of glycerol generates a chiral center at position 2. Rhizomucor miehei lipase (RML) catalyzes the kinetically controlled transesterification of different aromatic carboxylic acids methyl esters with glycerol. High synthetic yields of glyceryl esters (around 70-80%) were obtained even in the presence of significant concentrations of water (from 5% to 20%). After a long incubation of the reaction mixture in the presence of the biocatalyst only pure free acid was obtained. Other lipases (from Geobacillus thermocatenulatus and from Thermomyces lanuginose) also catalyzed similar kinetically controlled transesterifications although less efficiently. RML immobilized on Sepharose-Q showed a high activity and specificity, compared to the immobilization by other techniques, only producing monoglyceryl esters with all substrates. In particular, monoglyceryl-phenylmalonate product was synthesized in 82% overall yield and >99% diastereomeric excess at pH 7.0 and 37 °C and 90% glycerol.  相似文献   

20.
Permeabilized cells and cell extracts of Pelobacter acidigallici catalyzed the conversion of pyrogallol (1,2,3-trihydroxybenzene) to phloroglucinol (1,3,5-trihydroxybenzene) in the presence of 1,2,3,5-tetrahydroxybenzene. Pyrogallol consumption by resting cells stopped after lysis by French press or mild detergent (cetyltrimethylammonium bromide [CTAB]) treatment. Addition of 1,2,3,5-tetrahydroxybenzene to the assay mixture restored pyrogallol consumption and led to stoichiometric phloroglucinol accumulation. The stoichiometry of pyrogallol conversion to phloroglucinol was independent of the amount of tetrahydroxybenzene added. The tetrahydroxybenzene concentration limited the velocity of the transhydroxylation reaction, which reached a maximum at 1.5 mM tetrahydroxybenzene (1 U/mg of protein). Transhydroxylation was shown to be reversible. The equilibrium constant of the reaction was determined, and the free-energy change (delta G degree') of phloroglucinol formation from pyrogallol was calculated to be -15.5 kJ/mol. Permeabilized cells and cell extracts also catalyzed the transfer of hydroxyl moieties between other hydroxylated benzenes. Tetrahydroxybenzene and hydroxyhydroquinone participated as hydroxyl donors and as hydroxyl acceptors in the reaction, whereas pyrogallol, resorcinol, and phloroglucinol were hydroxylated by both donors. A novel mechanism deduced from these data involves intermolecular transfer of the hydroxyl moiety from the cosubstrate (1,2,3,5-tetrahydroxybenzene) to the substrate (pyrogallol), thus forming the product (phloroglucinol) and regenerating the cosubstrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号