首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma membrane ingression during cytokinesis involves both actin remodeling and vesicle-mediated membrane addition. Vesicle-based membrane delivery from the recycling endosome (RE) has an essential but ill-defined involvement in cytokinesis. In the Drosophila melanogaster early embryo, Nuf (Nuclear fallout), a Rab11 effector which is essential for RE function, is required for F-actin and membrane integrity during furrow ingression. We find that in nuf mutant embryos, an initial loss of F-actin at the furrow is followed by loss of the associated furrow membrane. Wild-type embryos treated with Latrunculin A or Rho inhibitor display similar defects. Drug- or Rho-GTP-induced increase of actin polymerization or genetically mediated decrease of actin depolymerization suppresses the nuf mutant F-actin and membrane defects. We also find that RhoGEF2 does not properly localize at the furrow in nuf mutant embryos and that RhoGEF2-Rho1 pathway components show strong specific genetic interactions with Nuf. We propose a model in which RE-derived vesicles promote furrow integrity by regulating the rate of actin polymerization through the RhoGEF2-Rho1 pathway.  相似文献   

2.
Heterotrimeric G-proteins of the Galpha12/13 family activate Rho GTPase through the guanine nucleotide exchange factor p115RhoGEF. Because Rho activation is also dependent on protein kinase Calpha (PKCalpha), we addressed the possibility that PKCalpha can also induce Rho activation secondary to the phosphorylation of p115RhoGEF. Studies were made using human umbilical vein endothelial cells in which we addressed the mechanisms of PKCalpha-induced Rho activation and its consequences on actin cytoskeletal changes. We observed that PKCalpha associated with p115RhoGEF within 1 min of thrombin stimulation and p115RhoGEF phosphorylation was dependent on PKCalpha. Inhibition of PKCalpha-dependent p115RhoGEF phosphorylation prevented the thrombin-induced Rho activation, indicating that the response occurred downstream of PKCalpha phosphorylation of p115RhoGEF. The regulator of G-protein signaling domain of p115RhoGEF, a GTPase activating protein for G12/13, also prevented thrombin-induced Rho activation, indicating the parallel requirement of G12/13 in signaling Rho activation via p115RhoGEF. These data demonstrate a pathway of Rho activation involving PKCalpha-dependent phosphorylation of p115RhoGEF. Thus, Rho activation in endothelial cells and the subsequent actin cytoskeletal re-arrangement require the cooperative interaction of both G12/13 and PKCalpha pathways that converge at p115RhoGEF.  相似文献   

3.
《Reproductive biology》2023,23(1):100727
Spermatogenesis is a continual process that relies on the activities of undifferentiated spermatogonia, which contain spermatogonial stem cells (SSCs) that serve as the basis of spermatogenesis. The gene expression pattern and molecular control of fate decisions of undifferentiated spermatogonia are not well understood. Rho guanine nucleotide exchange factor 15 (ARHGEF15, also known as EPHEXIN5) is a guanine nucleotide-exchange factor (GEF) that activates the Rho protein. Here, we reported that ARHGEF15 was expressed in undifferentiated spermatogonia and spermatocytes in mouse testes; however, its deletion did not affect spermatogenesis. Arhgef15-/- mice were fertile, and histological examination of the seminiferous tubules of Arhgef15-/- mice revealed complete spermatogenesis with the presence of all types of spermatogenic cells. Proliferation and differentiation of the undifferentiated spermatogonia were not impacted; however, further analysis showed that Arhgef15 deletion resulted in decreased expression of Nanos2, Lin28a and Ddx4. Together, these findings suggest that ARHGEF15 was specifically enriched in undifferentiated spermatogonia and regulated gene expression but dispensable for spermatogenesis in mice.  相似文献   

4.
5.
Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) – like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.  相似文献   

6.
The physical interaction of the plasma membrane with the associated cortical cytoskeleton is important in many morphogenetic processes during development. At the end of the syncytial blastoderm of Drosophila the plasma membrane begins to fold in and forms the furrow canals in a regular hexagonal pattern. Every furrow canal leads the invagination of membrane between adjacent nuclei. Concomitantly with furrow canal formation, actin filaments are assembled at the furrow canal. It is not known how the regular pattern of membrane invagination and the morphology of the furrow canal is determined and whether actin filaments are important for furrow canal formation. We show that both the guanyl-nucleotide exchange factor RhoGEF2 and the formin Diaphanous (Dia) are required for furrow canal formation. In embryos from RhoGEF2 or dia germline clones, furrow canals do not form at all or are considerably enlarged and contain cytoplasmic blebs. Both Dia and RhoGEF2 proteins are localised at the invagination site prior to formation of the furrow canal. Whereas they localise independently of F-actin, Dia localisation requires RhoGEF2. The amount of F-actin at the furrow canal is reduced in dia and RhoGEF2 mutants, suggesting that RhoGEF2 and Dia are necessary for the correct assembly of actin filaments at the forming furrow canal. Biochemical analysis shows that Rho1 interacts with both RhoGEF2 and Dia, and that Dia nucleates actin filaments. Our results support a model in which RhoGEF2 and dia control position, shape and stability of the forming furrow canal by spatially restricted assembly of actin filaments required for the proper infolding of the plasma membrane.  相似文献   

7.
The zyxin-related LPP protein is localized at focal adhesions and cell–cell contacts and is involved in the regulation of smooth muscle cell migration. A known interaction partner of LPP in human is the tumor suppressor protein SCRIB. Knocking down scrib expression during zebrafish embryonic development results in defects of convergence and extension (C&E) movements, which occur during gastrulation and mediate elongation of the anterior–posterior body axis. Mediolateral cell polarization underlying C&E is regulated by a noncanonical Wnt signaling pathway constituting the vertebrate planar cell polarity (PCP) pathway. Here, we investigated the role of Lpp during early zebrafish development. We show that morpholino knockdown of lpp results in defects of C&E, phenocopying noncanonical Wnt signaling mutants. Time-lapse analysis associates the defective dorsal convergence movements with a reduced ability to migrate along straight paths. In addition, expression of Lpp is significantly reduced in Wnt11 morphants and in embryos overexpressing Wnt11 or a dominant-negative form of Rho kinase 2, which is a downstream effector of Wnt11, suggesting that Lpp expression is dependent on noncanonical Wnt signaling. Finally, we demonstrate that Lpp interacts with the PCP protein Scrib in zebrafish, and that Lpp and Scrib cooperate for the mediation of C&E.  相似文献   

8.
Salmonella hijack host machinery in order to invade cells and establish infection. While considerable work has described the role of host proteins in invasion, much less is known regarding how natural variation in these invasion-associated host proteins affects Salmonella pathogenesis. Here we leveraged a candidate cellular GWAS screen to identify natural genetic variation in the ARHGEF26 (Rho Guanine Nucleotide Exchange Factor 26) gene that renders lymphoblastoid cells susceptible to Salmonella Typhi and Typhimurium invasion. Experimental follow-up redefined ARHGEF26’s role in Salmonella epithelial cell infection. Specifically, we identified complex serovar-by-host interactions whereby ARHGEF26 stimulation of S. Typhi and S. Typhimurium invasion into host cells varied in magnitude and effector-dependence based on host cell type. While ARHGEF26 regulated SopB- and SopE-mediated S. Typhi (but not S. Typhimurium) infection of HeLa cells, the largest effect of ARHGEF26 was observed with S. Typhimurium in polarized MDCK cells through a SopB- and SopE2-independent mechanism. In both cell types, knockdown of the ARHGEF26-associated protein DLG1 resulted in a similar phenotype and serovar specificity. Importantly, we show that ARHGEF26 plays a critical role in S. Typhimurium pathogenesis by contributing to bacterial burden in the enteric fever murine model, as well as inflammation in the colitis infection model. In the enteric fever model, SopB and SopE2 are required for the effects of Arhgef26 deletion on bacterial burden, and the impact of sopB and sopE2 deletion in turn required ARHGEF26. In contrast, SopB and SopE2 were not required for the impacts of Arhgef26 deletion on colitis. A role for ARHGEF26 on inflammation was also seen in cells, as knockdown reduced IL-8 production in HeLa cells. Together, these data reveal pleiotropic roles for ARHGEF26 during infection and highlight that many of the interactions that occur during infection that are thought to be well understood likely have underappreciated complexity.  相似文献   

9.
The cordon-bleu (Cobl) gene is widely conserved in vertebrates, with developmentally regulated axial and epithelial expression in mouse and chick embryos. In vitro, Cobl can bind monomeric actin and nucleate formation of unbranched actin filaments, while in cultured cells it can modulate the actin cytoskeleton. However, an essential role for Cobl in vivo has yet to be determined. We have used zebrafish as a model to assess the requirements for Cobl in embryogenesis. We find that cobl shows enriched expression in ciliated epithelial tissues during zebrafish organogenesis. Cobl protein is enriched in the apical domain of ciliated cells, in close proximity to the apical actin cap. Reduction of Cobl by antisense morpholinos reveals an essential role in development of motile cilia in organs such as Kupffer's vesicle and the pronephros. In Kupffer's vesicle, the reduction in Cobl coincides with a reduction in the amount of apical F-actin. Thus, Cobl represents a molecular activity that couples developmental patterning signals with local intracellular cytoskeletal dynamics to support morphogenesis of motile cilia.  相似文献   

10.
11.
During an inflammatory response, resident and newly recruited tissue macrophages adhere to extracellular matrix and cell-bound integrin ligands. This interaction induces the expression of pro-inflammatory mediators that include matrix metalloproteinases (MMPs). Arhgef1 is an intracellular signaling molecule expressed by myeloid cells that normally attenuates murine macrophage MMP production in vivo and in vitro after cell culture on the extracellular matrix protein, fibronectin. In this study, we have extended the characterization of this fibronectin-induced Arhgef1-regulated signaling pathway in both human and murine myeloid cells. Our results show that MMP9 production by fibronectin-stimulated monocytes and macrophages depends on autocrine thromboxane receptor signaling and that under normal conditions, this signaling pathway is attenuated by Arhgef1. Finally, we show that the expression of ARHGEF1 by human peripheral blood monocytes varies between individuals and inversely correlates with fibronectin-mediated MMP9 production.  相似文献   

12.
Rho GTPases regulate a wide variety of cellular processes, ranging from actin cytoskeleton remodeling to cell cycle progression and gene expression. Cell surface receptors act through a complex regulatory molecular network that includes guanine exchange factors (GEFs), GTPase activating proteins, and guanine dissociation inhibitors to achieve the coordinated activation and deactivation of Rho proteins, thereby controlling cell motility and ultimately cell fate. Here we found that a member of the RGL-containing family of Rho guanine exchange factors, PDZ RhoGEF, which, together with LARG and p115RhoGEF, links the G(12/13) family of heterotrimeric G proteins to Rho activation, binds through its C-terminal region to the serine-threonine kinase p21-activated kinase 4 (PAK4), an effector for Cdc42. This interaction results in the phosphorylation of PDZ RhoGEF and abolishes its ability to mediate the accumulation of Rho-GTP by Galpha13. Moreover, when overexpressed, active PAK4 was able to dramatically decrease Rho-GTP loading in vivo and the formation of actin stress fibers in response to serum or LPA stimulation. Together, these results provide evidence that PAK4 can negatively regulate the activation of Rho through a direct protein-protein interaction with G protein-linked Rho GEFs, thus providing a novel potential mechanism for cross-talk among Rho GTPases.  相似文献   

13.
14.
Zhu S  Liu L  Korzh V  Gong Z  Low BC 《Cellular signalling》2006,18(3):359-372
Gastrulation shapes the early embryos by forming three germ layers, ectoderm, mesoderm and endoderm. In vertebrates, this process requires massive cell rearrangement including convergence and extension (CE) movements that involve narrowing and lengthening of embryonic tissues as well as cell elongation. Such polarization and movements require precise reorganization and regulation of the cytoskeleton network and cell adhesion. Rho small GTPases are key regulators for dynamic actin cytoskeleton. However, the signaling mechanisms underlying their functions in CE remain to be further elucidated. We have cloned the zebrafish Danio rerio rhoA and by capitalizing on the specific functional knockdown using morpholinos against rhoA and the availability of CE mutants defective in Wnt signaling, we showed that rhoA morphants were reminiscent to noncanonical wnt mutants with serious disruption in CE movements. Injection of rhoA mRNA effectively rescued such defects in wnt5 and wnt11 mutants. Furthermore, CE defects in rhoA knockdown or wnt mutants can be suppressed through functional bypass after ectopic expression of the two mammalian Rho effectors, the Rho kinase and Diaphanous (mDia). These results provide the first evidence that the RhoA in vivo acts downstream of Wnt5 and Wnt11 to effect, without affecting cell fates, on the CE movements in zebrafish embryos. Significantly, it elicits such effect via both effectors, Rho kinase and Dia. These findings also support the versatility of the zebrafish as a model to further investigate the roles of various classes of small GTPases in regulating cell dynamics in vivo.  相似文献   

15.
Direct interaction of focal adhesion kinase with p190RhoGEF   总被引:12,自引:0,他引:12  
Focal adhesion kinase (FAK) is a protein-tyrosine kinase that associates with multiple cell surface receptors and signaling proteins through which it can modulate the activity of several intracellular signaling pathways. FAK activity can influence the formation of distinct actin cytoskeletal structures such as lamellipodia and stress fibers in part through effects on small Rho GTPases, although the molecular interconnections of these events are not well defined. Here, we report that FAK interacts with p190RhoGEF, a RhoA-specific GDP/GTP exchange factor, in neuronal cells and in brain tissue extracts by co-immunoprecipitation and co-localization analyses. Using a two-hybrid assay and deletion mutagenesis, the binding site of the FAK C-terminal focal adhesion targeting (FAT) domain was identified within the C-terminal coiled-coil domain of p190RhoGEF. Binding was independent of a LD-like binding motif within p190RhoGEF, yet FAK association was disrupted by a mutation (Leu-1034 to Ser) that weakens the helical bundle structure of the FAK FAT domain. Neuro-2a cell binding to laminin increased endogenous FAK and p190RhoGEF tyrosine phosphorylation, and co-transfection of a dominant-negative inhibitor of FAK activity, termed FRNK, inhibited lamininstimulated p190RhoGEF tyrosine phosphorylation and p21 RhoA GTP binding. Overexpression of FAK in Neuro-2a cells increased both endogenous p190RhoGEF tyrosine phosphorylation and RhoA activity, whereas these events were inhibited by FRNK co-expression. Because insulin-like growth factor 1 treatment of Neuro-2a cells increased FAK tyrosine phosphorylation and enhanced p190RhoGEF-mediated activation of RhoA, our results support the conclusion that FAK association with p190RhoGEF functions as a signaling pathway downstream of integrins and growth factor receptors to stimulate Rho activity.  相似文献   

16.
Morphogenesis involves the interplay of different cytoskeletal regulators. Investigating how they interact during a given morphogenetic event will help us understand animal development. Studies of ventral furrow formation, a morphogenetic event during Drosophila gastrulation, have identified a signaling pathway involving the G-protein Concertina (Cta) and the Rho activator RhoGEF2. Although these regulators act to promote stable myosin accumulation and apical cell constriction, loss-of-function phenotypes for each of these pathway members is not equivalent, suggesting the existence of additional ventral furrow regulators. Here, we report the identification of Abelson kinase (Abl) as a novel ventral furrow regulator. We find that Abl acts apically to suppress the accumulation of both Enabled (Ena) and actin in mesodermal cells during ventral furrow formation. Further, RhoGEF2 also regulates ordered actin localization during ventral furrow formation, whereas its activator, Cta, does not. Taken together, our data suggest that there are two crucial preconditions for apical constriction in the ventral furrow: myosin stabilization/activation, regulated by Cta and RhoGEF2; and the organization of apical actin, regulated by Abl and RhoGEF2. These observations identify an important morphogenetic role for Abl and suggest a conserved mechanism for this kinase during apical cell constriction.  相似文献   

17.
Aberrant activity of Rho small G-proteins and their regulators plays an important role in tumorigenesis. Rho guanine nucleotide exchange factor 10-Like (ARHGEF10L) is a member of the RhoGEF family that promotes the active GTP-bound state of Rho GTPases. This study used the Illumina GoldenGate microassay, Sequenom MassARRAY and TaqMan to analyze possible correlations between tag single nucleotide polymorphisms (tag SNPs) in the ARHGEF10L locus and various tumor risks. The genotyping analyses demonstrated a strong association of rs2244444 and rs12732894 with liver cancer. Western blotting and immunohistochemistry also revealed increased expression of ARHGEF10L in hepatocellular carcinoma tissues. Furthermore, increased cell proliferation, cell migration and RhoA activity; increased expression of Rho-associated coiled-coil kinase-1 (ROCK1), phospho- Ezrin/Radixin/Moesin (ERM), vimentin, N-cadherin and Slug, and decreased E-cadherin expression were detected in hepatocellular carcinoma cell Bel-7402 and HepG2 cells with transfection of ARHGEF10L-expressing plasmids. Opposite results were obtained in the two cell lines with transfection of anti-ARHGEF10L siRNA. Tumor-bearing mice were generated with Bel-7402 cells transfected with lentivirus vectors packaging short hairpin ARHGEF10L RNA. The xenograft tumors with the inhibited ARHGEF10L expression showed decreased tumor growth and expression of vimentin, N-cadherin and Slug. Additionally, decreased phospho-ERM expression was detected in Bel-7402 and HepG2 cells with transfection of anti-ROCK1 siRNA and increased expression of ROCK1 was detected in hepatocellular carcinoma tissues. E-cadherin, vimentin, N-cadherin and Slug are markers of the epithelial-to-mesenchymal transition (EMT). ROCK1, phospho-ERM and EMT have been reported to promote tumor cell proliferation, metastasis and angiogenesis. Our study suggests that increased expression of ARHGEF10L stimulates hepatocellular tumorigenesis by activating the RhoA-ROCK1- phospho ERM pathway and EMT.  相似文献   

18.
To study the regulation of embryonic development by Rho, we microinjected Clostridium botulinum C3-exoenzyme (C3) into zebrafish embryos. We found that C3 inhibited cytokinesis during early cleavages. C3 inhibition appeared to be specific on RhoA, since the constitutively active RhoA could partially rescued the C3-induced defects. Distributions of actin and the cleavage furrow associated beta-catenin were disrupted by C3. Belbbistatin, a myosin II inhibitor, also caused blastomeres disintegration. It suggested that Rho mediates cytokinesis via cleavage furrow protein assembly and actomyosin ring constriction. Furthermore, C3 blocked cellular movements during epiboly and gastrulation as evident by the impairment on no tail and goosecoid expression in blastoderm front runner cells and the dorsal lip of blastopore, respectively. Y-27632, an antagonist of Rho-associated kinase (ROK/ROCK), had the similar inhibitory effects on zebrafish development as the C3 treatments. Taken together, these results suggest that Rho mediates cleavage furrow protein assembly during cytokinesis and cellular migration during epiboly and gastrulation via a ROK/ROCK-dependent pathway.  相似文献   

19.
BACKGROUND INFORMATION: Rho GTPases are involved in many biological processes and participate in cancer development. Their activation is catalysed by exchange factors [RhoGEFs (Rho GTPase guanine nucleotide-exchange factor)] of the Dbl family. RhoGEFs display proto-oncogenic features, thus appearing as candidate targets for anticancer drugs. Dominant-negative Rho GTPase mutants have been widely used to block RhoGEF signalling. However, these tools suffer from limitations, due to the high number of RhoGEFs and the complex mechanisms that control Rho GTPase activation. RESULTS: RhoG-T17N is a poor inhibitor of its exchange factor TRIO-GEFD1 (first exchange domain of the exchange factor TRIO) in vivo: although it binds to TRIO-GEFD1, RhoG-T17N does not block the downstream signalling. Using the yeast exchange assay, we show that in the presence of TRIO-GEFD1, RhoG-T17N can bind to its effectors, which illustrates how negative mutants may produce misleading interpretations and emphasizes the need for new types of RhoGEF inhibitors. In that prospect, we adapted the yeast exchange assay method to identify RhoGEF inhibitors. Using this novel approach, we screened a 3500-chemical-compound library and identified a potential inhibitor of TRIO-GEFD1. This molecule inhibited TRIO-GEFD1 in vitro. Among the chemical analogues of this compound, we identified two molecules with better inhibitory activity. The three TRIO-GEFD1 inhibitors had no effect on ARHGEF17 and ARNO [ARF (ADP-ribosylation factor) nucleotide-binding-site opener], two exchange factors for RhoA and Arf1 respectively. CONCLUSIONS: The development of RhoGEF inhibitors appears as a valuable tool for the study of Rho GTPase signalling pathways. The yeast exchange assay adaptation we present here is suitable to screen for chemical or peptide libraries and identify candidate inhibitors.  相似文献   

20.
Signalling by the GTPase RhoA, a key regulator of epithelial cell behaviour, can stimulate opposing processes: RhoA can promote junction formation and apical constriction, and reduce adhesion and cell spreading. Molecular mechanisms are thus required that ensure spatially restricted and process-specific RhoA activation. For many fundamental processes, including assembly of the epithelial junctional complex, such mechanisms are still unknown. Here we show that p114RhoGEF is a junction-associated protein that drives RhoA signalling at the junctional complex and regulates tight-junction assembly and epithelial morphogenesis. p114RhoGEF is required for RhoA activation at cell-cell junctions, and its depletion stimulates non-junctional Rho signalling and induction of myosin phosphorylation along the basal domain. Depletion of GEF-H1, a RhoA activator inhibited by junctional recruitment, does not reduce junction-associated RhoA activation. p114RhoGEF associates with a complex containing myosin II, Rock II and the junctional adaptor cingulin, indicating that p114RhoGEF is a component of a junction-associated Rho signalling module that drives spatially restricted activation of RhoA to regulate junction formation and epithelial morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号