首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major secreted protein of Clostridium acetobutylicum NCIB 8052, a choline-containing strain, is CspA (clostridial secreted protein). It appears to be a 115,000-M(r) glycoprotein that specifically recognizes the choline residues of the cell wall. Polyclonal antibodies raised against CspA detected the presence of the protein in the cell envelope and in the culture medium. The soluble CspA protein has been purified, and an oligonucleotide probe, prepared from the determined N-terminal sequence, has been used to clone the cspA gene which encodes a protein with 590 amino acids and an M(r) of 63,740. According to the predicted amino acid sequence, CspA is synthesized with an N-terminal segment of 26 amino acids characteristic of prokaryotic signal peptides. Expression of the cspA gene in Escherichia coli led to the production of a major anti-CspA-labeled protein of 80,000 Da which was purified by affinity chromatography on DEAE-cellulose. A comparison of CspA with other proteins in the EMBL database revealed that the C-terminal half of CspA is homologous to the choline-binding domains of the major pneumococcal autolysin (LytA amidase), the pneumococcal antigen PspA, and other cell wall-lytic enzymes of pneumococcal phages. This region, which is constructed of four repeating motifs, also displays a high similarity with the glucan-binding domains of several streptococcal glycosyltransferases and the toxins of Clostridium difficile.  相似文献   

2.
The phosphatidylinositol (PI)-specific phospholipase C (PLC) of Bacillus cereus was cloned into Escherichia coli by using monoclonal antibody probes raised against the purified protein. The enzyme is specific for hydrolysis of the membrane lipid PI and PI-glycan-containing membrane anchors, which are important structural components of one class of membrane proteins. The protein expressed in E. coli comigrated with B. cereus PI-PLC in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as detected by immunoblotting, and conferred PI-PLC activity on the host. This enzyme activity was inhibited by PI-PLC-specific monoclonal antibodies. The nucleotide sequence of the PI-PLC gene suggests that this secreted bacterial protein is synthesized as a larger precursor with a 31-amino-acid N-terminal extension to the mature enzyme of 298 amino acids. From analysis of coding and flanking sequences of the gene, we conclude that the PI-PLC gene does not reside next to the gene cluster of the other two secreted phospholipases C on the bacterial chromosome. The deduced amino acid sequence of the B. cereus PI-PLC contains a stretch of significant similarity to the glycosylphosphatidylinositol-specific PLC of Trypanosoma brucei. The conserved peptide is proposed to play a role in the function of these enzymes.  相似文献   

3.
4.
Acetohydroxyacid isomeroreductase (AHAIR) is the shared second enzyme in the biosynthetic pathways leading to isoleucine and valine. AHAIR is encoded by the ilvC gene in bacteria. A 1,544-bp fragment of genomic DNA containing the ilvC gene was cloned from the cyanobacterium Synechocystis sp. strain PCC 6803, and the complete nucleotide sequence was determined. The identity of the gene was established by comparison of the nucleotide and derived peptide sequences with those of other ilvC genes. The highest degree of sequence similarity was found with the ilvC gene from Rhizobium meliloti. The isolated Synechocystis ilvC gene complemented an Escherichia coli ilvC mutant lacking AHAIR activity. The expressed Synechocystis gene encodes a protein that has a molecular mass of 35.7 kDa and that has AHAIR activity in an in vitro assay. Polyclonal antibodies raised against purified Synechocystis AHAIR produced a single band on a Western blot (immunoblot) of a Synechocystis cell extract and detected the protein in an extract of an E. coli ilvC mutant strain that was transformed with a plasmid containing the Synechocystis ilvC gene. The antibody did not react with an extract of an E. coli ilvC mutant strain that was transformed with a control plasmid lacking the Synechocystis ilvC gene or with an extract of an E. coli IlvC+ control strain.  相似文献   

5.
P Sommer  C Bormann    F Gtz 《Applied microbiology》1997,63(9):3553-3560
Streptomyces cinnamomeus Tü89 secretes a 30-kDa esterase and a 50-kDa lipase. The lipase-encoding gene, lipA, was cloned from genomic DNA into Streptomyces lividans TK23 with plasmid vector pIJ702. Two lipase-positive clones were identified; each recombinant plasmid had a 5.2-kb MboI insert that contained the complete lipA gene. The two plasmids differed in the orientation of the insert and the degree of lipolytic activity produced. The lipA gene was sequenced; lipA encodes a proprotein of 275 amino acids (29,213 Da) with a pI of 5.35. The LipA signal peptide is 30 amino acids long, and the mature lipase sequence is 245 amino acids long (26.2 kDa) and contains six cysteine residues. The conserved catalytic serine residue of LipA is in position 125. Sequence similarity of the mature lipases (29% identity, 60% similarity) was observed mainly in the N-terminal 104 amino acids with the group II Pseudomonas lipases; no similarity to the two Streptomyces lipase sequences was found. lipA was also expressed in Escherichia coli under the control of lacZ promoter. In the presence of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG), growth of the E. coli clone was severely affected, and the cells lysed in liquid medium. Lipase activity in the E. coli clone was found mainly in the pellet fraction. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, three additional protein bands of 50, 29, and 27 kDa were visible. The 27-kDa protein showed lipolytic activity and represents the mature lipase; the 29- and 50-kDa forms showed no activity and very probably represent the unprocessed form and a dimeric misfolded form, respectively. For higher expression of lipA in S. lividans, the gene was cloned next to the strong aphII promoter. In contrast to the lipA-expressing E. coli clone, S. cinnamomeus and the corresponding S. lividans clone secreted only an active protein of 50 kDa. The lipase showed highest activity with C6 and C18 triglycerides; no activity was observed with phospholipids, Tween 20, or p-nitrophenylesters. Upstream of lipA and in the same orientation, an open reading frame, orfA, is found whose deduced protein sequence (519 amino acids) shows similarity to various membrane-localized transporters. Downstream of lipA and in the opposite orientation, an open reading frame, orfB (encoding a 199-amino-acid protein) is found, which shows no conspicuous sequence similarity to known proteins, other than an NAD and flavin adenine dinucleotide binding-site sequence.  相似文献   

6.
Two proteins, PS1 and PS2, were detected in the culture medium of Corynebacterium glutamicum and are the major proteins secreted by this bacterium. No enzymatic activity was identified for either of the two proteins. Immunologically cross-reacting proteins were found in a variety of C. glutamicum strains but not in the coryneform Arthrobacter aureus. The gene encoding PS1, csp1, was cloned in lambda gt11 using polyclonal antibodies raised against PS1 to screen for producing clones. The csp1 gene was expressed in Escherichia coli, presumably from its own promoter, and directed the synthesis of two proteins recognized by anti-PS1 antibodies. The major protein band, of lower M(r), was detected in the periplasmic fraction. It had the same M(r) as the PS1 protein band detected in the supernatant of C. glutamicum cultures and presumably corresponds to the mature form of PS1. The minor protein band appears to be the precursor form of PS1. The nucleotide sequence of the csp1 gene was determined and contained an open reading frame encoding a polypeptide with a calculated molecular weight of 70,874, with a putative signal peptide with a molecular weight of 4411. This is consistent with the M(r) determined for PS1 from C. glutamicum culture supernatant and E. coli whole-cell extracts. The NH2-half of the deduced amino acid is similar (about 33% identical residues and 52% including similar residues) to the secreted antigen 85 protein complex of Mycobacterium. The csp1 gene in C. glutamicum was disrupted without any apparent effect on growth or viability.  相似文献   

7.
By using appropriate Corynebacterium glutamicum-Escherichia coli shuttle plasmids, the gene encoding the fibronectin-binding protein 85A (85A) from Mycobacterium tuberculosis was expressed in C. glutamicum, also an actinomycete and nonsporulating gram-positive rod bacterium, which is widely used in industrial amino acid production. The 85A gene was weakly expressed in C. glutamicum under the control of the ptac promoter from E. coli, but it was produced efficiently under the control of the promoter of the cspB gene encoding PS2, one of the two major secreted proteins from C. glutamicum. The 85A protein was produced in various forms, with or without its own signal sequence and with or without the signal sequence and the NH2-terminal (18-amino-acid) mature sequence of PS2. Western blot analysis with monoclonal antibodies raised against the M. tuberculosis antigen 85 complex showed that recombinant 85A protein was present in the corynebacterial cell wall extract and also released in extracellular culture medium. NH2-terminal microsequencing of recombinant 85A secreted by C. glutamicum showed that signal peptide was effectively cleaved off at the predicted site. The recombinant 85A protein was biologically active in vitro, inducing significant secretion of Th1 T-cell cytokines, particularly interleukin-2 and gamma interferon, in spleen cell cultures from mice vaccinated with live Mycobacterium bovis BCG. Heterologous expression of mycobacterial antigens in C. glutamicum now offers a potent tool for further immunological characterization and large scale preparation of these recombinant proteins.  相似文献   

8.
重组炭疽保护性抗原的表达、纯化与生物活性分析   总被引:14,自引:1,他引:14  
构建分泌型表达质粒 ,在大肠杆菌中实现了重组炭疽保护性抗原 (rPA)的分泌型表达。重组蛋白位于细菌外周质 ,表达量约占菌体总蛋白的 10 %。以离子交换、疏水层析和凝胶过滤为基础 ,建立了rPA的纯化工艺 ,每升培养物可获得约 15mgrPA ,纯度可达 95 %以上。体外细胞毒性试验显示rPA具有较好的生物学活性。用rPA免疫家兔产生的抗血清在体外可抑制炭疽致死毒素的活性 ,表明rPA可诱导机体产生保护性免疫。以上结果为今后发展新一代炭疽疫苗打下基础  相似文献   

9.
Abstract The nucleotide sequence of the gene encoding the Fibrobacter succinogenes S85 cellulose-binding protein 1 (CBP1) has been determined. The gene encodes a protein of 1054 amino acids with a molecular mass of 118614. The deduced amino acid sequence of CBPl showed an extensive similarity to the cellulose-binding domain of an endoglucanase (EGCCD) from Clostridium cellulolyticum and contained the reiterated regions. The cloned gene was inserted into an expression vector, pRSETA, and was expressed in E. coli as a fused protein with the peptide consisting of six consecutive histidine residues. The fused protein was detected by immunoblotting using antiserum against CBP1, and exhibited the cellulose-binding activities.  相似文献   

10.
Western blot (immunoblot) analysis of Bacillus subtilis cell extracts detected two proteins that cross-reacted with monospecific polyclonal antibody raised against Escherichia coli initiation factor 2 alpha (IF2 alpha). Subsequent Southern blot analysis of B. subtilis genomic DNA identified a 1.3-kilobase (kb) HindIII fragment which cross-hybridized with both E. coli and Bacillus stearothermophilus IF2 gene probes. This DNA was cloned from a size-selected B. subtilis plasmid library. The cloned HindIII fragment, which was shown by DNA sequence analysis to encode the N-terminal half of the B. subtilis IF2 protein and 0.2 kb of upstream flanking sequence, was utilized as a homologous probe to clone an overlapping 2.76-kb ClaI chromosomal fragment containing the entire IF2 structural gene. The HindIII fragment was also used as a probe to obtain overlapping clones from a lambda gt11 library which contained additional upstream and downstream flanking sequences. Sequence comparisons between the B. subtilis IF2 gene and the other bacterial homologs from E. coli, B. stearothermophilus, and Streptococcus faecium displayed extensive nucleic acid and protein sequence homologies. The B. subtilis infB gene encodes two proteins, IF2 alpha (78.6 kilodaltons) and IF2 beta (68.2 kilodaltons); both were expressed in B. subtilis and E. coli. These two proteins cross-reacted with antiserum to E. coli IF2 alpha and were able to complement in vivo an E. coli infB gene disruption. Four-factor recombination analysis positioned the infB gene at 145 degrees on the B. subtilis chromosome, between the polC and spcB loci. This location is distinct from those of the other major ribosomal protein and rRNA gene clusters of B. subtilis.  相似文献   

11.
12.
The gene coding for the GGTNACC specific Ecal DNA methyltransferase (M.Ecal) has been cloned in E. coli from Enterobacter cloacae and its nucleotide sequence has been determined. The ecalM gene codes for a protein of 452 amino acids (Mr: 51,111). It was determined that M.Ecal is an adenine methyltransferase. M.Ecal shows limited amino acid sequence similarity to other adenine methyltransferases. A clone that expresses Ecal methyltransferase at high level was constructed.  相似文献   

13.
The tomato (Lycopersicon esculentum Mill.) cDNA clone TomA5B was isolated by differential screening of a cDNA library prepared from anthers at late meiosis to tetrad formation. The 5B gene is present in a single copy in the tomato genome. Expression is developmentally regulated and tissue specific. RNA accumulation was detected from premeiosis through tetrad release in the tapetal cell layer of the anther with low levels of RNA detected in petals and early stages of pistil development. The protein deduced from the DNA sequence analysis is predicted to have a molecular mass of 11.1 kDa and a secretory signal sequence, suggesting it is a secreted protein. The deduced 5B protein has a pattern of cysteine residues that is similar to other proteins that have stamen-specific expression and to a superfamily of seed proteins. The 5B protein is unique in that there is no amino acid sequence similarity to other proteins beyond the similar cysteine motif.  相似文献   

14.
A fragment of Mycobacterium tuberculosis DNA containing recA-like sequences was identified by hybridization with the Escherichia coli recA gene and cloned. Although no expression was detected from its own promoter in E. coli, expression from a vector promoter partially complemented E. coli recA mutants for recombination, DNA repair, and mutagenesis, but not for induction of phage lambda. This clone produced a protein which cross-reacts with antisera raised against the E. coli RecA protein and was approximately the same size. However, the nucleotide sequence of the cloned fragment revealed the presence of an open reading frame for a protein about twice the size of other RecA proteins and the cloned product detected by Western blotting (immunoblotting). The predicted M. tuberculosis RecA protein sequence was homologous with RecA sequences from other bacteria, but this homology was not dispersed; rather it was localized to the first 254 and the last 96 amino acids, with the intervening 440 amino acids being unrelated. Furthermore, the junctions of homology were in register with the uninterrupted sequence of the E. coli RecA protein. Identical restriction fragments were found in the genomic DNAs of M. tuberculosis H37Rv and H37Ra and of M. bovis BCG. It is concluded that the ancestral recA gene of these species diversified via an insertional mutation of at least 1,320 bp of DNA. Possible processing mechanisms for synthesizing a normal-size RecA protein from this elongated sequence are discussed.  相似文献   

15.
The 6.5-kilobase mre region at 71 min in the Escherichia coli chromosome map, where genes involved in formation of a rod-shaped cell form a gene cluster, was analyzed by in vivo protein synthesis in a maxicell system and by base sequencing of DNA. An open reading frame that may code for a protein with an Mr of about 37,000 on sodium dodecyl sulfate-polyacrylamide gels was found and was correlated with the mreB gene. N-terminal amino acid sequencing of the hybrid mreB-lacZ protein confirmed the production by mreB of a protein of 347 amino acid residues with a molecular weight of 36,958. The amino acid sequence of this protein deduced from the DNA sequence showed close similarity with that of a protein of the ftsA gene which is involved in cell division of E. coli. Three other contiguous genes that formed three proteins with Mrs of about 40,000, 22,000, and 51,000, respectively, were detected downstream of the mreB gene by in vivo protein synthesis. The mreB protein and some of these three proteins may function together in determination of cell shape.  相似文献   

16.
Screening of a genomic library with an antiserum raised against whole Lactobacillus fermentum BR11 cells identified a clone expressing an immunoreactive 37-kDa protein. Analysis of the 3010-bp DNA insert contained within the clone revealed four open reading frames (ORFs). One ORF encodes LysA, a 303 amino acid protein which has up to 35% identity with putative endolysins from prophages Lj928 and Lj965 from Lactobacillus johnsonii and Lp1 and Lp2 from Lactobacillus plantarum as well as with the endolysin of Lactobacillus gasseri bacteriophage Phiadh. The immunoreactive protein was shown to be encoded by a truncated ORF downstream of lysA which has similarity to glutamyl-tRNA synthetases. The N-terminus of LysA has sequence similarity with N-acetylmuramidase catalytic domains while the C-terminus has sequence similarity with putative cell envelope binding bacterial SH3b domains. C-terminal bacterial SH3b domains were identified in the majority of Lactobacillus bacteriophage endolysins. LysA was expressed in Escherichia coli and unusually was found to have a broad bacteriolytic activity range with activity against a number of different Lactobacillus species and against Lactococcus lactis, streptococci and Staphylococcus aureus. It was found that LysA is 2 and 8000 times more active against L. fermentum than L. lactis and Streptococcus pyogenes, respectively.  相似文献   

17.
Monoclonal antibodies against two of the proteins specified by one of the transforming genes (early region 1B) of human adenovirus type 2 have been produced and characterized. Two clones (RA1 and PA6), generated by fusion of mouse myeloma NSO cells with splenocytes from rats immunized with whole-cell lysates of an adenovirus-transformed rat cell line (F19), secreted antibodies against a 58 kDa protein. Another clone (DC1) produced antibodies against the same protein, and resulted from fusion of immune rat splenocytes with the rat myeloma Y3.Ag.1.2.3. Immunoprecipitation studies showed that all three antibodies recognized [35S]-methionine-labelled 58 kDa protein, and phosphorylated derivatives of the 58 kDa protein labelled with [32P]orthophosphate present in infected human cells. One clone (EC3) produced antibody against a 19 kDa protein also encoded by early region 1B, but not sharing sequence homology with 58 kDa. The identity of the 19 kDa protein recognized by the EC3 antibody was established by immunoprecipitation from lysates of labelled-infected cells and from products of cell-free translation directed by mRNA isolated from adenovirus 2-infected cells. Indirect immunofluorescent-antibody staining of infected human cells using the RA1 and EC3 antibodies revealed a nuclear location of the 58 kDa protein and a mainly cytoplasmic location of the 19 kDa protein.  相似文献   

18.
利用脂质体转染技术,将含有SNV株禽网状内皮组织增生症病毒 (REV)前病毒全基因组cDNA克隆质粒转染鸡胚成纤维细胞(CEF).用对REV的单克隆抗体和抗REV env-gp90的鼠血清作间接免疫荧光反应,在原始的转染细胞及随后传代的细胞中均显示病毒特异性抗原.而且,在连续传代细胞中的阳性率明显升高.用REV特异性引物对进一步传代后的细胞基因组作PCR,也检测出REV基因组.这些结果均表明所得到的分子克隆化病毒具有传染性,因而也进一步证明所用的质粒克隆包含有具感染性的全病毒基因组.对该全基因组cDNA克隆进行酶切所获得的数个亚克隆进行测序,并将序列进行拼接,完成了REV全基因组序列.REV的这个传染性克隆将有助于进一步研究REV的分子生物学特性.  相似文献   

19.
Overexpression of the divalent cation-regulated outer membrane protein H1 of Pseudomonas aeruginosa is associated with resistance to polymyxin B, aminoglycosides, and EDTA. Protein H1 is believed to act by replacing divalent cations at binding sites on lipopolysaccharide, thereby preventing disruption of the sites and subsequent self-promoted uptake of the antibiotics. Protein H1 purified by two cycles of anion-exchange chromatography was apparently associated with lipopolysaccharide. Lipopolysaccharide-free protein H1 was purified in high yield by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was subjected to N-terminal amino sequencing. Complementary oligodeoxyribonucleotides were used to clone the structural gene for protein H1, oprH, into Escherichia coli. Successful cloning was confirmed by nucleotide sequence analysis. Southern hybridization suggested that oprH was present as a single-copy gene in P. aeruginosa. The deduced amino acid sequence revealed that H1 was a slightly basic polypeptide of 178 residues, with a leader sequence typical of an exported procaryotic protein. It had little similarity, however, to other bacterial surface proteins for which sequence data were available. No expression of protein H1, from its own or the lac promoter, was detected in E. coli. We concluded that, as for some other regulated Pseudomonas genes, expression of oprH, at least under some conditions, is blocked in E. coli.  相似文献   

20.
A cDNA clone, pCHS62, was isolated using poly(A)-rich RNA from heat-shocked Chlamydomonas reinhardtii cells. The clone has a length of 1.1 kb and codes for the complete heat-shock protein which was reported to be associated with the grana region of the thylakoid membranes and ascribes protection against photoinhibition during heat-shock. An expression vector prepared in the pUC19 plasmid was used to obtain a fusion protein against which rabbit polyclonal antibodies have been raised. The antibodies react specifically with the heat-shock protein of 22 kDa synthesized in vivo during heat-shock, which is localized in the grana thylakoids, with the in vitro translated product using poly(A)-rich RNA from heat-treated cells as well as with the hybrid release translation product of the pCHS62 clone. The clone was sequenced. It contains a 5' region consisting of 85 nucleotides, an open reading frame of 471 nucleotides and a non-coding 3' region of 600 nucleotides. Northern hybridization indicates a length of 1.7 kb for the messenger RNA of heat-shock protein 22. Analysis of similarity between the derived amino acid sequence of this protein and other heat-shock proteins demonstrates that this protein belongs to the small-molecular-mass plant heat-shock protein family and also shows similarities with animal heat-shock proteins including the presence of a short region possessing similarity with bovine alpha-crystalline as reported for other heat-shock proteins. The molecular mass of the protein as determined from the sequence is 16.8 kDa. Despite its localization in the chloroplast membranes, it does not seem to include a transit peptide sequence, in agreement with previous data. The sequence contains only a short hydrophobic region compatible with its previously reported localization as a thylakoid extrinsic protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号