首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous fasting during reproduction (sometimes with a full stomach) and moult is a major characteristic of the annual cycle of penguins. Long-term fasting (up to four months in male emperor penguins) is anticipated by the accumulation of fat (incubation fast) and of fat and protein (moult fast). During most of the incubation fast, birds rely almost entirely on lipids as an energy source, body proteins being spared. However, below a critical (but non-total) fat store depletion, marked behavioural, metabolic, and endocrine changes occur. Spontaneous locomotor activity increases and the egg is transitorily left unincubated for increasingly long periods, until its definitive abandon and the bird departs to re-feed at sea. These changes are thought to be activated by an endogenous re-feeding signal triggered before lethal energy depletion. An increase in body protein catabolism in the face of a reduction in lipid availability and utilisation, and an increase in circulating corticosterone vs. a decrease in plasma prolactin, are likely to be major metabolic and hormonal components of this signal. The survival and rapid restoration of energy stores in birds having departed to re-feed at a stage of near total lipid depletion demonstrates the effectiveness of the re-feeding signal. Penguins, and possibly other seabirds, are therefore appropriate animal models for understanding the long-term interactions between body energy reserves and fasting, breeding and feeding physiology and behaviour.  相似文献   

2.
Hypothesizing that emperor penguins (Aptenodytes forsteri) would have higher daily energy expenditures when foraging for their food than when being hand-fed and that the increased expenditure could represent their foraging cost, we measured field metabolic rates (FMR; using doubly labeled water) over 4-d periods when 10 penguins either foraged under sea ice or were not allowed to dive but were fed fish by hand. Surprisingly, penguins did not have higher rates of energy expenditure when they dove and captured their own food than when they did not forage but were given food. Analysis of time-activity and energy budgets indicated that FMR was about 1.7 x BMR (basal metabolic rate) during the 12 h d(-1) that penguins were lying on sea ice. During the remaining 12 h d(-1), which we termed their "foraging period" of the day, the birds were alert and active (standing, preening, walking, and either free diving or being hand-fed), and their FMR was about 4.1 x BMR. This is the lowest cost of foraging estimated to date among the eight penguin species studied. The calculated aerobic diving limit (ADL(C)), determined with the foraging period metabolic rate of 4.1 x BMR and known O(2) stores, was only 2.6 min, which is far less than the 6-min ADL previously measured with postdive lactate analyses in emperors diving under similar conditions. This indicates that calculating ADL(C) from an at-sea or foraging-period metabolic rate in penguins is not appropriate. The relatively low foraging cost for emperor penguins contributes to their relatively low total daily FMR (2.9 x BMR). The allometric relationship for FMR in eight penguin species, including the smallest and largest living representatives, is kJ d(-1)=1,185 kg(0.705).  相似文献   

3.
The demands of incubation and avian clutch size   总被引:5,自引:0,他引:5  
We reviewed information on the demands of incubation to examine whether these could influence the optimal clutch size of birds. The results indicate that appreciable metabolic costs of incubation commonly exist, and that the incubation of enlarged clutches can impose penalties on birds. In 23 studies on 19 species, incubation metabolic rate (IMR) was not elevated above the metabolic rate of resting non-incubating birds (RMR), but contrary to the physiological predictions of King and others, IMR was greater than RMR in 15 studies on 15 species. Across species, IMR was substantially above basal metabolic rate (BMR), averaging 1.606 × BMR. Of six studies on three species performed under thermo-neutral conditions, none found IMR to be in excess of RMR. IMRs measured exclusively within the thermo-neutral zone averaged only 1.08 × BMR contrasting with the significantly higher figure of 1.72 × BMR under wider conditions. 16 of 17 studies on procellariiforms found IMR below RMR, indicating a significant difference between this and other orders. We could find no other taxonomic, or ecological factors which had clear effects on IMR. Where clutch size was adjusted experimentally during incubation, larger clutches were associated with: significantly lower percentage hatching success in 11 of 19 studies; longer incubation periods in eight of ten studies; greater loss of adult body condition in two of five studies; and higher adult energy expenditure in eight of nine studies. Given that incubation does involve metabolic costs and given that the demands of incubation increase sufficiently with clutch size to affect breeding performance, we propose that the optimal clutch size of birds may in part by shaped by the number of eggs the parents can afford to incubate.  相似文献   

4.
E. Challet  C.-A. Bost    Y. Handrich    J.-P. Gendner      Y. Le  Maho 《Journal of Zoology》1994,233(4):669-681
As do so many other seabirds, penguins fast when ashore for breeding. For penguins in dense colonies, territory defence seems to imply conflicting energetic requirements because of its assumed high energy cost, when the birds need to limit energy expenditure to cope with their fast. In this context, behavioural time budget over 24 h was investigated during breeding in the king penguin, Aptenodytes putugonicu , by using a remote-controlled videocamera. The comparison of day-night activity was performed in relation to breeding status (incubation vs. brooding) and duration of fasting (beginning vs. end of incubation shift). Five categories of behaviours were quantified: territoly defence, comfort, resting, sleeping and chick-feeding. Breeding king penguins remain active by day as well as by night. Between incubation and brooding we found a three-fold increase in the energy consuming temtory defence, together with a drastic decrease in that posture which corresponds to deep sleep, is. when most energy is saved. These increases in aggressiveness and vigilance may be related to protection of the newly hatched chick. Between the onset and the end of an incubation shift, the time spent in sleep increases three-fold, whereas territory defence remains unchanged. These data for penguins under natural conditions accord with previous studies on captive birds which have shown that an increasing proportion of sleep during the course of fasting may contribute to energy saving. On the other hand, both resting (which is the main component of penguins'time budget; about 65%) and comfort (about 16% of time) show no change either between incubation and brooding or during the course of fasting.  相似文献   

5.
In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (Vo2; -33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-alpha) mRNA in pectoralis muscle (-54%, -36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting Vo2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting.  相似文献   

6.
Fasting is part of penguin's breeding constraints. During prolonged fasting, three metabolic phases occur successively. Below a threshold in body reserves, birds enter phase III (PIII), which is characterized by hormonal and metabolic shifts. These changes are concomitant with egg abandonment in the wild and increased locomotor activity in captivity. Because corticosterone (CORT) enhances foraging activity, we investigated the variations of endogenous CORT, and the effects of exogenous CORT on the behavioral, hormonal, and metabolic responses of failed breeder Adélie penguins. Untreated and treated captive male birds were regularly weighed and sampled for blood while fasting, and locomotor activity was recorded daily. Treated birds were implanted with various doses of CORT during phase II. Untreated penguins entering PIII had increased CORT (3.5-fold) and uric acid (4-fold; reflecting protein catabolism) levels, concomitantly with a rise in locomotor activity (2-fold), while prolactin (involved in parental care in birds) levels declined by 33%. In CORT-treated birds, an inverted-U relationship was obtained between CORT levels and locomotor activity. The greatest increase in locomotor activity was observed in birds implanted with a high dose of CORT (C100), locomotor activity showing a 2.5-fold increase, 4 days after implantation to a level similar to that of birds in PIII. Moreover, uric acid levels increased three-fold in C100-birds, while prolactin levels declined by 30%. The experimentally induced rise in CORT levels mimicked metabolic, hormonal, and behavioral changes, characterizing late fasting, thus supporting a role for this hormone in the enhanced drive for refeeding occurring in long-term fasting birds.  相似文献   

7.
Measurements of incubation energetics can vary depending on the method used to measure metabolism of an incubating bird. Therefore, we evaluated the energy expenditure of six male and four female wandering albatrosses (Diomedea exulans Linnaeus) using doubly labeled water (DLW), the rate of mass loss, and estimates of metabolic water production derived from water influx rate (WIR). Incubation metabolic rates (IMR) determined with DLW (169+/-21 kJ x kg(-1) x d(-1) SD) were significantly lower than estimates derived from mass loss (277+/-46 kJ x kg(-1) x d(-1) SD) and WIR (males=289+/-60 kJ x kg(-1) x d(-1) vs. females=400+/-69 kJ x kg(-1) x d(-1) SD). Estimates of IMR from mass loss and WIR were similar to IMR (305+/-39 kJ x kg(-1) x d(-1) SD) determined by respirometry in a previous study, and IMR from DLW was similar to estimates based on heart rate (HR; 147+/-26 kJ x kg(-1) x d(-1) SD) determined in another study. Applying the different measurements of IMR to construct an energy budget, we estimate that a breeding pair of wandering albatrosses spends 124-234 MJ to incubate the egg for 78 d. Finally, IMRs determined with DLW and HR were similar to estimated basal metabolic rates derived from six different allometric equations, suggesting that heat production from adult maintenance metabolism is sufficient to incubate the egg.  相似文献   

8.
We determined the hepatic and renal concentrations of Cd, Pb, Zn, Cu, and Fe in (1) marine mammals (three bottle-nosed dolphins, six California sea lions, and one sea otter), (2) freshwater and brackish-water mammals (one Oriental short-clawed otter and four European river otters), and (3) sea birds (three rock-hopper penguins, two king penguins, three Humboldt penguins, four Macaroni penguins, and four Magellanic penguins), all of which were kept in a zoo and an aquarium in Japan. We investigated the species-specificity of Cd accumulation in these aquatic animals. We also presented the basic data on metal concentrations. The concentrations of Cd in liver and kidney tended to be higher in marine mammals than in freshwater mammals. Many penguins, sea birds, showed high Cd concentrations. These results suggest that the habits of these animal species may be involved in accumulation of Cd. Pb concentrations were below the detection limit or low in both liver and kidney [not detected (ND)=0.132 μg/g and ND=0.183 μg/g, respectively]. The hepatic concentrations of Zn and Cu were high in young animals. In penguins, a positive correlation was found between the Zn and Cd concentrations in the liver and kidney and between the Cu and Cd concentrations in the liver. Individual variation was large in Fe concentration (48–3746 μg/g in the liver and 51–980 μg/g in the kidney).  相似文献   

9.
Summary Adélie penguins (Pygoscelis adeliae) carrying dummy instruments were used to determine field metabolic rates using double-labelled water. All penguins injected with double-labelled water showed a marked loss of body mass (-4.5%) during the period of the experiments (20–131 h), irrespective of the time of the breeding season. Total body water averaged 57.3% and water flux estimates of field metabolic rates correlated with double-labelled water estimates of field metabolic rate (r 2=0.68), indicating that Adélie penguins do not ingest significant amounts of sea water. Brooding Adélie penguins had a mean field metabolic rate of 10.1 W·kg-1 and at sea a field metabolic rate of 13.3 W·kg-1, both of which compare well with previously published estimates based on time/activity budgets and respirometry. Mean field metabolic rate in penguins with crèching chicks was 14.1 W·kg-1, and the birds spent 65 h absent from the nest as opposed to previous estimates of 7.1 W·kg-1 and 21 h. The effects of weather, disturbance and manipulation on the behaviour and field metabolic rate of penguins late in the breeding season are discussed. Adélie penguins (crèching chicks) equipped with externally attached instruments spent more time absent from the nest than noninstrumented controls (76 vs 54 h), but had a lower field metabolic rate.Abbreviations ANOVA analysis of variance - DLW double-labelled water - FMR field metabolic rate - MR metabolic rate - RMR resting metabolic rate - TBW total body water - VSMOW Vienna standard mean ocean water - WF water flux  相似文献   

10.
According to life-history theory, long-lived birds should favor their survival over the current reproductive attempt, when breeding becomes too costly. In seabirds, incubation is often associated with spontaneous long-term fasting. Below a threshold in body reserves, hormonal and metabolic shift characteristics of a switch from lipid to protein utilization (phase III, PIII) occur. These metabolic changes are paralleled by nest abandonment and stimulation of refeeding behavior. Parental behavior is then under control of two hormones with opposite effects: corticosterone (CORT) and prolactin which stimulate foraging and incubation behavior, respectively.The aim of this study was to determine the respective role of these two hormones in nest abandonment by Adélie penguins. To this end, plasma hormone levels were measured before egg-laying and at departure from the colony (i.e. when birds were relieved by their partner or abandoned their nest), and related to nutritional state and incubation success.We found that males abandoning their nest in PIII presented high CORT levels and low prolactin levels. Interestingly, males which presented high plasma levels of prolactin in PIII did not abandon. We show that although CORT is the first hormone to be affected by prolonged energy constraints, the combined effects of high CORT and low prolactin levels are necessary for parents to favor self-maintenance and abandon the nest. We provide insights into time-course changes of the endocrine profile as PIII proceeds and report that reaching proteolytic late fasting is not sufficient to induce nest abandonment in a long-lived bird.  相似文献   

11.
This study is directed toward understanding the process of feeding stimulation ("refeeding signal") that has been suggested to operate below a body mass threshold or critical metabolic status in spontaneously fasting birds. Behavior and egg temperature (T(egg)) were continuously monitored by video monitoring and biotelemetry, respectively, in fasting-incubating king penguins kept in a pen to prevent relief by the partner until spontaneous egg abandonment. Penned birds fasted 10 days more and lost 1.2 kg more than birds relieved normally by their partner, abandoning the egg about 1 wk after reaching a critical body mass. Definitive egg abandonment was preceded by transitory abandonments of progressively increasing duration during which time the birds went further and further away from their egg. There were marked interindividual differences but on average transitory abandonments began 36 +/- 5 h before the definitive abandonment and were paralleled by resumption of display songs signaling the readiness of the bird to depart for feeding. T(egg) was maintained at around 35.7 degrees C during normal incubation but significantly decreased the last 2 days before egg abandonment. These changes are interpreted as reflecting a stimulation to refeed at a threshold body mass corresponding to a critical fat store depletion. Thus the fasting-incubating king penguin appears to be an interesting animal model for understanding the long-term metabolic control of feeding behavior in relation to energy status.  相似文献   

12.
《Hormones and behavior》2011,59(5):762-768
According to life-history theory, long-lived birds should favor their survival over the current reproductive attempt, when breeding becomes too costly. In seabirds, incubation is often associated with spontaneous long-term fasting. Below a threshold in body reserves, hormonal and metabolic shift characteristics of a switch from lipid to protein utilization (phase III, PIII) occur. These metabolic changes are paralleled by nest abandonment and stimulation of refeeding behavior. Parental behavior is then under control of two hormones with opposite effects: corticosterone (CORT) and prolactin which stimulate foraging and incubation behavior, respectively.The aim of this study was to determine the respective role of these two hormones in nest abandonment by Adélie penguins. To this end, plasma hormone levels were measured before egg-laying and at departure from the colony (i.e. when birds were relieved by their partner or abandoned their nest), and related to nutritional state and incubation success.We found that males abandoning their nest in PIII presented high CORT levels and low prolactin levels. Interestingly, males which presented high plasma levels of prolactin in PIII did not abandon. We show that although CORT is the first hormone to be affected by prolonged energy constraints, the combined effects of high CORT and low prolactin levels are necessary for parents to favor self-maintenance and abandon the nest. We provide insights into time-course changes of the endocrine profile as PIII proceeds and report that reaching proteolytic late fasting is not sufficient to induce nest abandonment in a long-lived bird.  相似文献   

13.
Field metabolic rates (FMR) and activity patterns of black-browed albatrosses Thalassarche melanophrys were measured while at sea and on nest during the incubation stage at Kerguelen Island, southwestern Indian Ocean. Activity-specific metabolic rates of five albatrosses at sea (FMRat-sea) were measured using doubly labeled water (DLW), and by equipping birds with wet-dry activity data loggers that determined when birds were in flight or on the water. The metabolic rates of four birds incubating their eggs (FMRon-nest) were also measured using DLW. The mean±SD FMRat-sea of albatrosses was 611±96 kJ kg−1 d−1 compared to FMRon-nest of 196±52 kJ kg−1 d−1. While at sea, albatrosses spent 52.9±8.2% (N=3) of their time in flight and they landed on the water 41.2±13.9 times per day. The FMR of black-browed albatrosses appear to be intermediate to that of three other albatross species. Based on at-sea activity, the power requirement of flight was estimated to be 8.7 W kg−1 (or 4.0×predicted BMR), which is high compared to other albatross species, but may be explained by the high activity levels of the birds when at sea. The FMRat-sea of albatrosses, when scaled with body mass, are lower than other seabirds of similar body size, which probably reflects the economical nature of their soaring flight.  相似文献   

14.
Heating eggs during incubation may be relatively energeticallycostly, affecting the outcome or number of breeding attempts.We determined the effect of reduced egg heating costs on nestattendance, change in body mass, and daily energy expenditure(DEE using the doubly labeled water technique) by heating nestsof pectoral sandpipers. We also considered ground temperature,which may influence overall incubation costs, and mass reservesand stage of incubation, which may influence an individual'sability to respond to changes in overall incubation cost. Thetotal proportion of time spent in attending the eggs was significantlygreater in nests that were experimentally heated (3.6% or 52min daily), and this effect was significantly greater at lowground temperatures (14.7% or 211.7 min daily). Mass changewas independent of experimental heating when controlling forattendance, although mass loss rate was greater for birds thatattended more (for every 10% increase in daily proportion ofattendance 0.12 extra grams of body mass were lost per hour),and overall daily attendance increased by 0.5% for every extra1 g of body mass. DEE was greater for birds that had the higherrates of mass gain (for every 0.1 g of mass gained per hour,DEE increased by 20.5 kJ per day) but was independent of experimentalheating when controlling for attendance. Overall, the resultssuggest that females are constrained from attending more bytheir energy reserve levels being depleted at least partly bythe costs of egg heating, but these costs probably do not determineDEE, as costs off the nest may far exceed those incurred whilesitting. Breeding in the arctic is clearly energetically demanding:pectoral sandpipers had an average DEE of 361.1 ± 8.9kjd–1, a mean power output of 4.1 W, equivalent to 6.1times basal metabolic rate (n = 24 birds).  相似文献   

15.

Background

Birds may allocate a significant part of time to comfort behavior (e.g., preening, stretching, shaking, etc.) in order to eliminate parasites, maintain plumage integrity, and possibly reduce muscular ankylosis. Understanding the adaptive value of comfort behavior would benefit from knowledge on the energy costs animals are willing to pay to maintain it, particularly under situations of energy constraints, e.g., during fasting. We determined time and energy devoted to comfort activities in freely breeding king penguins (Aptenodytes patagonicus), seabirds known to fast for up to one month during incubation shifts ashore.

Methodology/Principal Findings

A time budget was estimated from focal and scan sampling field observations and the energy cost of comfort activities was calculated from the associated increase in heart rate (HR) during comfort episodes, using previously determined equations relating HR to energy expenditure. We show that incubating birds spent 22% of their daily time budget in comfort behavior (with no differences between day and night) mainly devoted to preening (73%) and head/body shaking (16%). During comfort behavior, energy expenditure averaged 1.24 times resting metabolic rate (RMR) and the corresponding energy cost (i.e., energy expended in excess to RMR) was 58 kJ/hr. Energy expenditure varied greatly among various types of comfort behavior, ranging from 1.03 (yawning) to 1.78 (stretching) times RMR. Comfort behavior contributed 8.8–9.3% to total daily energy expenditure and 69.4–73.5% to energy expended daily for activity. About half of this energy was expended caring for plumage.

Conclusion/Significance

This study is the first to estimate the contribution of comfort behavior to overall energy budget in a free-living animal. It shows that although breeding on a tight energy budget, king penguins devote a substantial amount of time and energy to comfort behavior. Such findings underline the importance of comfort behavior for the fitness of colonial seabirds.  相似文献   

16.
MARK BOLTON 《Ibis》1996,138(3):405-409
Many avian species, such as Storm Petrels Hydrobates pelagicus, are intolerant of disturbance at the nest, which complicates the collection of data relating to metabolic rate and the use of body reserves during incubation. I describe the design of an artificial nest chamber, which is simple and inexpensive to construct and facilitates the collection of such data. Eighty-one nest chambers situated in a large colony of breeding Storm Petrels had high occupancy rates (29/81 in each of 2 years), and the breeding success of birds nesting in boxes was similar to that of pairs nesting in natural crevices. Direct measurement of carbon dioxide production using standard respirometry techniques and estimations of metabolic rate based on the rates of mass loss during incubation indicated close agreement between the two methods of estimating energy consumption. Assuming the metabolic requirements during incubation are furnished entirely from stomach oil, 76% of the daily mass lost represented stomach oil catabolism. The duration of incubation shifts was unrelated to the body mass, and presumably to body reserves, of Storm Petrels on arrival at the nest. Shifts were usually terminated by the return of the foraging partner. The body mass of birds returning from foraging was relatively constant and was unrelated to the amount of time spent foraging at sea, indicating that the decision rule to return from foraging was the acquisition of a threshold level of body mass (about 31 g). There was a negative relationship between the duration of foraging trips and the body mass of Storm Petrels at departure from the nest and a positive relationship between trip duration and the net mass gain at sea. The use of nestboxes based on the design described here would have a wide variety of applications in facilitating data collection for many cavity-or burrow-nesting species which are sensitive to disturbance.  相似文献   

17.
Complete development of avian eggs requires external heat, inducing in most species an energetic cost of incubation for the parents. Triiodothyronine (T(3)) has been implicated in the control of the metabolic rate and is decreased during fasting in most bird species. This raises the question of the regulation of T(3) during reproduction when incubation (thus heat production) is associated with fasting (and energy sparing). In this study, plasma concentrations of T(3) were studied for different clutch sizes in incubating, as well as in nonincubating, fasting female eiders. Our results show that the T(3) levels decrease during fasting in nonincubating birds, whereas they were maintained during the incubation fast. T(3) levels increased in female eiders at hatching. The plasma T(3) level did not vary among natural clutch sizes in eiders but did so when manipulated. T(3) levels increased when eggs were added (to a maximum of six eggs, i.e., the biggest natural clutch size) or removed (to two eggs, i.e., the smallest natural clutch size). Our results suggest that (1) high T(3) levels during incubation may participate to a threshold of heat production and incubation metabolic rate in eiders despite the fact that they are fasting; (2) since T(3) is associated with the energy expenditure in birds, incubating an enlarged or reduced clutch size may lead to a higher energetic cost of incubation in eiders; and (3) the energy demand of the ducklings at hatching is probably important, as the female T(3) concentrations are then at their highest levels. Thus, any modification of the natural clutch size leads to a rise in the T(3) level of the incubating female, suggesting an additional cost of incubation. Knowing that there is no variation of T(3) levels among natural clutch sizes, this study suggests that a female eider produces a number of eggs corresponding to the energy she can invest in incubation.  相似文献   

18.
Returning to the shore after a feeding sojourn at sea, king penguins often undertake a relatively long terrestrial journey to the breeding colony carrying a heavy, mostly frontal, accumulation of fat along with food in the stomach for chick-provisioning. There they must survive a fasting period of up to a month in duration, during which their complete reliance on endogenous energy stores results in a dramatic loss in body mass. Our aim was to determine if the king penguin’s walking gait changes with variations in body mass. We investigated this by walking king penguins on a treadmill while instrumented with an acceleration data logger. The stride frequency, dynamic body acceleration (DBA) and posture of fat (pre-fasting; 13.2 kg) and slim (post fasting; 11 kg) king penguins were assessed while they walked at the same speed (1.4km/h) on a treadmill. Paired statistical tests indicated no evidence for a difference in dynamic body acceleration or stride frequency between the two body masses however there was substantially less variability in both leaning angle and the leaning amplitude of the body when the birds were slimmer. Furthermore, there was some evidence that the slimmer birds exhibited a decrease in waddling amplitude. We suggest the increase in variability of both leaning angle and amplitude, as well as a possibly greater variability in the waddling amplitude, is likely to result from the frontal fat accumulation when the birds are heavier, which may move the centre of mass anteriorly, resulting in a less stable upright posture. This study is the first to use accelerometry to better understand the gait of a species within a specific ecological context: the considerable body mass change exhibited by king penguins.  相似文献   

19.
Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.  相似文献   

20.
1. We determined standard metabolic rates (SMR) of wild-caught adults of the Adelie penguin, southern giant fulmar, blue-eyed shag, and South Polar skua at Palmer Station, Antarctica, during January and February 1981. Oxygen consumption was measured volumetrically in a closed system at temperatures between 2 and 12 degrees C. 2. Mean SMR varied between 0.82 l O2/kg per hr for male fulmars and 1.30 l O2/kg per hr for unsexed adult skuas. Values were 174-198% of those predicted by the Lasiewski-Dawson equation for nonpasserines. 3. The SMR of the Adelie penguin was considerably higher than that reported in other studies and higher than most values for other species of penguins. 4. Our measurements of oxygen consumption agree with some estimates of metabolism based upon loss of mass by fasting birds during incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号