首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
将免疫荧光及传统全细胞膜片钳技术应用于新鲜分离的小鼠胃Cajal间质细胞样细胞上,探讨了小鼠胃Cajal间质细胞样细胞形态和电生理学特性。经胶原酶消化得到的Cajal间质细胞样细胞胞体呈短梭形,且自胞体发出多个较短的毛刺状突起。免疫细胞化学结果表明,Cajal间质细胞样细胞胞体和突起酪氨酸激酶受体c-kit表达呈阳性。在传统全细胞记录模式、膜电位钳制在-60mV的条件下,可以记录到自发、节律性内向电流,即起搏电流。钙调蛋白抑制剂W-7 (50μmol/L)明显增强了起搏电流幅度并引发明显的内向钳制电流。当电极内液中EGTA的浓度由0.1mmol/L增加到10mmol/L时,也明显增强了起搏电流幅度并引发明显的内向钳制电流。实验结果提示,新鲜分离的小鼠胃Cajal间质细胞样细胞可以产生自发、自律性内向电流,而这种电流对胞内低钙或钙调蛋白抑制剂敏感。这种具有自发性电活动的Cajal间质细胞样细胞可能就是胃Cajal间质细胞。  相似文献   

2.
Cajal间质细胞(ICCs)是胃肠道的起搏者,在消化系统中具有重要的起搏功能.目前在膀胱中发现了形态学和免疫学上和ICCs相似的细胞,被称为膀胱Cajal样细胞.这类细胞既具有某些起搏细胞的特征,同时又与膀胱逼尿肌细胞紧密相连.这类细胞在膀胱活动中所起的作用就成为广大科研人员关注的问题,本文就膀胱Cajal样细胞的结构、形态、分布特点及其在信号传导中的作用进行了综述.  相似文献   

3.
目的:尝试优化体外培养Balb/c小鼠胃Cajal间质细胞(interstitial cells of Cajal,ICC)的实验方法,为深入探索该细胞的生理病理作用机制提供基础。方法:无菌条件下取出小鼠胃组织,使用酶解法消化分离细胞,将细胞悬液接种于含有SCF(干细胞因子)的M199培养基中培养,并进行传代。倒置显微镜下观察不同时间段细胞生长状态,采用ICC特异性标志物c-Kit(酪氨酸激酶受体)进行免疫荧光鉴定。结果:细胞培养24 h后基本已贴壁,呈梭形或三角形,有短突起;72 h后细胞胞体变大,突起伸长;5 d后,细胞之间通过突起彼此相互连接,开始形成网状结构;传代后细胞依然保持其固有特征。免疫荧光鉴定可见细胞c-Kit抗体荧光染色阳性。结论:使用酶解法成功分离细胞,细胞数量较多但不增殖,传代后可见细胞纯度较好,稳定培养3周以上后细胞形态逐渐发生变化并开始凋亡。  相似文献   

4.
目的:探索大鼠膀胱Cajal间质细胞(ICC)的分离和培养方法,为进一步研究其在膀胱中的作用提供条件.方法:取大鼠的膀胱组织,采用Ⅱ型胶原酶酶解法分离细胞,将细胞悬液接种于含50ng/ml SCF、15%(v/v)FBS的DMEM培养基中,进行培养.用c-kit特异性杭体标记细胞,免疫荧光鉴定ICC细胞.结果:培养8小时后的ICC贴壁良好,并保持其固有特征:两个长的突起,多个短的侧突.胞体小,核大,c-kit抗体荧光染色阳性.结论:酶解法分离大鼠膀胱ICC并培养成功.  相似文献   

5.
目的:探索顺铂对胃组织Cajal间质细胞(Cajal interstitial cells,ICCs)结构和功能的损伤以及姜黄素的保护作用。方法:选用成年雄性昆明种小鼠,随机分为对照组、顺铂组和顺铂+姜黄素组,每组各10只。姜黄素(200 mg/kg/d)混悬液连续灌胃15天。顺铂于实验结束前5天开始腹腔注射(2 mg/kg/d)共5天。计算每只小鼠最后5天的体重增减值,停药24 h后测量小鼠的胃排空率。电镜检测胃组织ICC超微结构,并测定特异性反映ICC功能变化的Ano1蛋白和m RNA的表达情况。结果:注射顺铂后各组小鼠的体重和胃排空率均显著降低(P0.01);与顺铂组相比,姜黄素预先灌胃组小鼠体重下降较少(P0.01),胃排空率有所回升(P0.05)。注射顺铂后,胃组织中ICCs受损,尤其与周围神经和肌肉间的缝隙连接增大甚至断裂,而姜黄素可以减轻这种损伤。同时,顺铂组胃组织中Ano1 m RNA和蛋白表达均下降(P0.01),加姜黄素组有所改善(P0.05)。结论:而姜黄素可通过减轻顺铂所致胃组织ICC结构损伤以及增强Ano1表达进而增强ICC慢波起博功能。  相似文献   

6.
肌球蛋白轻链激酶及其抑制剂   总被引:2,自引:0,他引:2  
杨桂芝 《生命的化学》1999,19(6):279-281
肌球蛋白轻链激酶(MLCK)是三磷酸肌醇(IP3)、Ca2+-钙调蛋白(CaM)信息转导途径的一种重要蛋白质,也是第一个被发现的依赖于CaM的激酶,对肌肉收缩起着重要作用[1]。MLCK抑制剂从CaM水平或MLCK自身水平上抑制MLCK的活性,可抑制或减弱平滑肌的收缩。天然植物中的多种化合物对MLCK有较强的抑制作用,有吖啶类、黄酮类、蒽醌类、菲类和喹啉类化合物等,为植物资源的开发利用提供了有价值的依据。1.MLCK的结构和酶促反应动力学研究MLCK的活性型是由Ca2+、CaM和全酶组成的三元复…  相似文献   

7.
目的:研究高糖环境下豚鼠膀胱Cajal间质细胞(interstitial cells of Cajal,ICCs)形态及细胞内钙离子荧光的改变,探讨糖尿病膀胱(diabetic cystopathy,DCP)的发病机制。方法:采用酶消化法原代培养,激光共聚焦技术观察5、10、15mol/L葡萄糖浓度下培养24、72h的ICCs,每浓度/时间取30个细胞测量其长度,再从中随机选10个细胞,以200ms/张图片的速度进行扫描,获得每个时间点细胞内钙离子荧光强度值。结果:糖浓度增高培养时间延长,ICCs内钙离子荧光值升高(P=0.00),只有15mol/L/24h降低(P=0.00);ICCs细胞长度缩短(P=0.00),只有10mol/L/72h细胞长度增长(P=0.00)。结论:高糖环境对豚鼠膀胱ICCs形态学及电生理学造成显著影响,这种改变可能是造成DCP发病的重要原因之一。  相似文献   

8.
目的:研究高糖环境下豚鼠膀胱Cajal间质细胞(interstitial cells of Cajal,ICCs)形态及细胞内钙离子荧光的改变,探讨糖尿病膀胱(diabetic cystopathy,DCP)的发病机制.方法:采用酶消化法原代培养,激光共聚焦技术观察5、10、15mol/L葡萄糖浓度下培养24、72h的ICCs,每浓度/时间取30个细胞测量其长度,再从中随机选10个细胞,以200ms/张图片的速度进行扫描,获得每个时间点细胞內钙离子荧光强度值.结果:糖浓度增高培养时间延长,ICCs内钙离子荧光值升高(P=0.00),只有15mol/L/24h降低(p=0.00);ICCs细胞长度缩短(P=0.00),只有10mol/L/72h细胞长度增长(P=0.00).结论:高糖环境对豚鼠膀胱ICCs形态学及电生理学造成显著影响,这种改变可能是造成DCP发病的重要原因之一.  相似文献   

9.
钙调蛋白激酶Ⅱ对细胞生理功能的调节作用   总被引:2,自引:0,他引:2  
钙调蛋白激酶Ⅱ(CaMKⅡ)是一种多功能蛋白激酶,作为细胞钙信号的重要响应分子广泛参与细胞生理功能调节,包括细胞形态、凋亡、迁移、兴奋-收缩偶联和骨重建等。本文在介绍CaMKⅡ分子结构及其活化机制的基础上,就其对细胞生理功能的调节作用作一综述。  相似文献   

10.
瞬时受体电位(TRP)通道是一类钙离子透过性的阳离子通道蛋白家族,参与了视觉、味觉、温度感受等重要的生物学过程。之前的研究表明,钙离子既能够正反馈也能够负反馈地调节瞬时受体电位通道的活性,而这种调节可能是通过钙调蛋白(calmodulin,CaM)与TRP通道的相互作用来进行的。为了阐明这一调控机制,我们首先需要对钙调蛋白与瞬时受体电位通道之间的相互作用进行详细的生化研究。在此项研究中,通过大肠杆菌表达系统,表达和纯化了果蝇瞬时受体电位通道羧基末端不同长短的蛋白片段,并发现了一个新的钙调蛋白结合位点。通过快速蛋白液相色谱、静态光散射以及等温量热滴定技术,鉴定了这一钙调蛋白结合位点与果蝇瞬时受体电位通道之间的相互作用,发现它们在钙离子依赖的条件下,可以形成亲和力非常强的稳定的蛋白复合物(解离常数在01~1微摩尔范围)。此外,通过合成多肽的方法,鉴定了果蝇瞬时受体电位通道913~939片段为该钙调蛋白结合位点的核心区域。最后,通过突变实验,进一步明确了果蝇瞬时受体电位通道922位的酪氨酸以及923位的缬氨酸为其钙调蛋白结合位点的关键氨基酸。总而言之,本研究发现和鉴定了果蝇瞬时受体电位通道上一个新的钙依赖的钙调蛋白结合位点,这一发现将为研究瞬时受体电位通道的体内功能提供生化基础,为阐明钙离子通过钙调蛋白调节瞬时受体电位通道的分子机制做出贡献。  相似文献   

11.
The role of the interstitial cells of Cajal (ICC) associated with the myenteric plexus (ICC-MP) as regulators of the motility of the colonic external muscle remains unclear. Ultrastructural studies of myenteric interstitial cells are lacking in human colon. We therefore characterized the distinctive ultrastructure of these cells in the myenteric region of the colon by transmission electron microscopy of the region between the main muscle layers in all parts of the colon in unaffected areas of resected specimens from nine adult human patients. ICC-MP were similar in various colonic regions and had myoid features such as scattered caveolae, prominent intermediate filaments, and cytoplasmic dense bodies. We found characteristic dense membrane-associated bands with a patchy basal lamina, invaginating cellular protrusions (peg and socket junctions) between ICC and between ICC and muscle cells, and close contacts (<100 nm) between ICC and nerves. No gap junctions were observed. Fibroblast-like cells (FLC) were abundant showing well-developed secretory organelles, including coated vesicles, but lacked prominent intermediate filaments and caveolae. FLC had a patchy basal lamina, and peg and socket junctions were observed between them. Macrophage-like cells frequently occurred in close apposition with FLC and, more seldomly, with ICC-MP. The ultrastructure of ICC and FLC in the myenteric region of the human colon thus differs characteristically, but significant overlaps in the ultrastructure between ICC and FLC might complicate any interpretation in pathological ultrastructural studies of the human colonic muscle layer. An erratum to this article can be found at  相似文献   

12.
Using a cell cluster preparation from the stomach smooth muscle tissue of mice, we measured intracellular Ca(2+) oscillations in interstitial cells of Cajal (ICCs) in the presence of nifedipine. Pacemaker [Ca(2+)](i) activity in ICCs was significantly suppressed by caffeine application and restored after washout. Application of either ryanodine or FK-506 terminated the pacemaker [Ca(2+)](i) activity irreversibly. Immunostaining of smooth muscle tissue showed that c-Kit-immunopositive cells (that form network-like structure cells in the myenteric plexus, equivalent to ICCs) clearly express ryanodine receptors (RyR). RT-PCR revealed that ICCs (identified with c-Kit-immunoreactivity) predominantly express type 3 RyR (RyR3). Furthermore, the FK-binding proteins 12 and 12.6, both of which would interact with RyR3, were detected. In conclusion, we provide first evidence for the essential contribution of RyR to generating pacemaker activity in gastric motility. Similar mechanisms might account for spontaneous rhythmicity seen in smooth muscle tissues distributed in the autonomic nervous system.  相似文献   

13.
HCN通道(hyperpolarization-activated cyclic nucleotide-gated channels)是一种超极化激活的,钠、钾、钙离子混合通透的,直接受cAMP调控的离子通道,在人体内的分布具有一定的组织和细胞特异性,其不仅与神经系统疾病联系紧密,与胃肠道动力障碍疾病也存在一定联系。对HCN通道生理功能、在胃肠起搏电流形成中作用及与疾病的关系的深入了解,必将对今后的研究以及临床治疗有实际意义。  相似文献   

14.
Using an embryoid body (EB) culture system, we developed a functional organ-like cluster, a "gut", from mouse embryonic stem (ES) cells (ES gut). Each ES gut exhibited various types of spontaneous movements. In these spontaneously contracting ES guts, dense distributions of interstitial cells of Cajal (ICC) (c-kit, a transmembrane receptor that has tyrosine kinase activity, positive cells; gut pacemaker cells) and smooth muscle cells were discernibly identified. By adding Glivec 10(-5)M, a tyrosine kinase receptor c-kit inhibitor, only during EB formation, we for the first time succeeded in suppressing in vitro formation of ICC in the ES gut. The ES gut without ICC did not exhibit any movements. However, it appeared that Glivec 10(-6)-10(-7)M rather increased number of ES guts with spontaneous movements associated with increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). These results suggest ICC is critical for in vitro formation of ES guts with spontaneous movements.  相似文献   

15.
BackgroundThe rhythmic contraction and relaxation of smooth muscles in the gastrointestinal (GI) tract is governed by pacemaker electrical potentials, also termed slow waves, which are calcium currents generated by interstitial cells of Cajal (ICCs). Malfunction of pacemaker rhythms contributes to a number of clinically challenging gastrointestinal motility disorders.MethodA microelectrode array (MEA) was used to record slow waves in vitro from intact GI tissues freshly isolated from the ICR mouse and Suncus murinus. The effects of temperature, extracellular calcium and potassium concentrations on pacemaker potentials were quantified using spatiotemporal metrics.ResultsPacemaker frequency decreased from the duodenum to the ileum in the mouse, but this phenomenon was less significant in Suncus murinus. In both the mouse and Suncus murinus, the stomach had a much lower pacemaker frequency than the intestine. Propagation velocity and amplitude were highest in the proximal intestine. Temperature significantly increased pacemaker frequency in the intestinal tissues of both species. Removal of Ca2+ from the medium inhibited pacemaker potential and increasing the Ca2+ concentration increased pacemaker frequency in the mouse ileum. Increasing K+ concentration decreased pacemaker frequency in the absence of nifedipine.ConclusionsThe MEA allows efficient investigation of gut pacemaker frequency and propagation.  相似文献   

16.
马静  张铁民 《生物磁学》2012,(31):6195-6197,6194
Cajal间质细胞(interstitial cells of cajal,ICC)主要分布在胃肠道平滑肌细胞与神经纤维之间,是一类特殊的间质细胞,它是胃肠运动的起搏细胞,具有产生、传导慢波,调节胃肠道平滑肌运动的功能。而慢性假性肠梗阻是由于胃肠神经抑制,毒素刺激或肠壁平滑肌本身病变,导致的肠壁肌肉运动功能减弱,临床上具有肠梗阻的症状和体征,但无肠内外机械性肠梗阻因素存在,故又称动力性肠梗阻。按病程有急性和慢性之分,麻痹性肠梗阻和痉挛性肠梗阻属于急性假性肠梗阻,深入研究Caja1间质细胞,对进一步认识胃肠运动的生理及胃肠动力疾病的发生机制有重要意义。  相似文献   

17.
In the adventitia of large arteries, dendritic cells are located between nerve fibers, some of which contain substance P. The aim of the present study was to examine whether neurokinin 1 receptor (NK-1R) was expressed by dendritic cells in the arterial wall. Parallel sections of aortic and carotid artery segments were immunostained with anti-NK-1R and cell-type-specific antibodies. Dendritic cells in the arterial wall expressed NK-1R, albeit at a low level. Other cells, which intensely expressed NK-1R, were located along the border between the media and adventitia. They did not co-express any dendritic cell markers, including fascin, CD1a, S100, or Lag-antigen, and were negative for CD68, CD3, and mast cell tryptase. These NK-1R+ cells were laser-capture microdissected and studied by means of electron-microscopic analysis. The microdissected cells were in direct contact with nerve endings, and their ultrastructure was typical of the interstitial cells of Cajal present in the gastrointestinal tract. Further systematic electron-microscopic analysis revealed that the cells displaying the features typical of interstitial cells of Cajal were a basic element of the human arterial wall architectonics. Arterial interstitial cells of Cajal were negative for c-kit but they expressed vasoactive intestinal peptide receptor 1 (VIPR1). Destructive alterations of contacts between arterial interstitial cells of Cajal and nerve endings were observed in arterial segments with atherosclerotic lesions. The functional significance of the arterial interstitial cells of Cajal and their possible involvement in atherosclerosis and other vascular diseases need clarification.This work was supported by the St Vincents Clinic Foundation, Sydney, Australia.  相似文献   

18.
We present transmission electron microscope (TEM) evidence that ICC and ICC-like cells frequently establish close contacts (synapses) with several types of immunoreactive cells (IRC): lymphocytes, plasma cells, eosinophils, basophils, macrophages and mast cells. Such synapses were found in various organs: human mammary gland and myometrium, as well as rat stomach, gut, bladder and uterus. Specimens were observed by conventional TEM on ultrathin sections. Based on morphometric analyses and computer-aided 3-D reconstructions from serial sections, we propose an operational definition of ICC-IRC synapses: cell-to-cell close contacts where the two cells are separated by only approximately 15 nm, equivalent to twice the plasmalemmal thickness. Two types of such synapses were found: (i) uniform ('plain') synapses (PS). close contact extending for >200 nm, and (ii) multi-contact ('kiss and run') synapses (MS)--with multiple, focal, close-contact points alternating with regions of wider intermembrane distance. For instance, a typical PS between a rat bladder ICC-like cell and an eosinophil was 2.48 microm long and 11+/-4 nm wide. By contrast, a MS synapse in rat myometrium (between an ICC-like cell and an eosinophil) was 8.64 microm long and had 13 contact points. The synaptic cleft measured 15+/-8 nm at contact points and approximately 100 nm or more in wider areas. These synapses are different from gap junctions usually seen between ICC and between ICC and smooth muscle cells. We previously proposed that ICC-like cells might represent stromal progenitor cells, participate in juxtacrine/paracrine signaling and play a role in immune surveillance. The nanoscopic distances between the two contiguous membranes suggest a juxtacrine cell-to-cell signaling (chemical synapse), via juxtacrinins, a specific case of phenomenins. However, the (micro)vesicles found in the synaptic cleft may correspond to an exosome-based mechanism.  相似文献   

19.
目的:探索成年大鼠阴茎海绵体内cajal间质细胞(ICCs)的分离、培养和鉴定方法,为进一步研究其在阴茎海绵体中的作用提供条件.方法:取大鼠阴茎海绵体组织,采用酶消化法分离细胞,差速贴壁法相对纯化ICCs,将纯化后的细胞悬液接种于DMEM培养基中进行培养.通过倒置显微镜下观察细胞贴壁和形态,并用c-Kit特异性抗体标记细胞,免疫荧光法鉴定ICCs.结果:培养24小时后ICCs贴壁良好,细胞形态学观察显示ICCs呈纺锤状,有两个或多的突起,免疫荧光检验可见ICCs呈c-Kit抗体染色阳性.结果:用酶消化法可成功分离和培养大鼠阴茎海绵体ICCs,大鼠海绵体组织内ICCs的生理学功能有待进一步研究.  相似文献   

20.
The tachykinin substance P (SP) acts on the gut muscle coat via its preferred receptor, neurokinin 1 (NK1r). In the mouse ileum, NK1r-immunoreactivity (NK1r-IR) was detected in neurons, in the interstitial cells of Cajal at the deep muscular plexus (ICC-DMP) and the myoid cells of the villi. SP-IR was detected in neurons and varicose nerve fibers, which were especially numerous at the DMP and closely associated with the ICC-DMP. In mice with a mutation in the W locus (ckit mutant animals), innervation is suggested to be normal although few studies have actually tested this hypothesis. Indeed, studies demonstrating ICC-DMP integrity are lacking and whether SP- and NK1r-IR are normal in these animals has not been investigated. Our aim was to perform an immunohistochemical study on the ileum of a strain of heterozygous mice with a mutation in the W locus, the W(e/+) mice, to test this hypothesis. SP-IR nerve fibers were significantly more numerous than in wild type mice; NK1r-IR was clustered on the plasma membrane and also intracytoplasmatic in the neurons, but absent in the ICC-DMP. The richness in SP-IR nerve fibers and the NK1r-IR distribution in the neurons, similar to that of activated cells, might be attempts to compensate for the SP preferred receptor absence at the ICC-DMP. In conclusion, SP content and NK1r expression are noticeably different in c-kit mutants with respect to wild type mice, and probably causing an anomalous tachykininergic control of intestinal motility. Physiological studies on Wmutant mice have to take into account that innervation in this animal model is affected by the c-kit mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号