首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signalling pathways utilized by tumor necrosis factor-a (TNF) to elicit its actions have been examined in TA1 adipogenic cells. A role for lipoxygenase metabolites of arachidonic acid as mediators of TNF action in the induction of c-fos has been described. In this paper we report that acute cytotoxicity elicited by TNF, in the presence of cycloheximide (CHX), also utilizes this pathway since inhibitors of lipoxygenase action fully prevent TNF/CHX killing of several cell lines. Our data reveal that TNF induction of manganous superoxide dismutase (MnSOD) is also dependent upon lipoxygenase activity. Radical scavengers such as NAC and PDTC prevent TNF/CHX-induced cell killing and reduce MnSOD induction by TNF. Therefore, cell death by TNF/CHX treatment occurs via a pathway in which lipoxygenase products directly or indirectly operate via the generation of superoxide anions.  相似文献   

2.
Monocyte-mediated oxidation of low-density lipoprotein (LDL) converts the lipoprotein to a potent cytotoxin. The oxidation process requires monocyte activation and requires superoxide anion since it can be blocked by superoxide dismutase. In this study, the requirement for lipoxygenase activity is shown, in that 1) inhibitors of lipoxygenase prevent the alteration of LDL, 2) copper (II) (3,5-diisopropylsalicylic acid), an agent shown to enhance lipoxygenase activity in a cell-free system, similarly enhances monocyte-mediated LDL alteration, and 3) the (3,5-diisopropylsalicylic acid)-enhanced monocyte-mediated modification of LDL can be completely blocked by inhibitors of lipoxygenase or by superoxide dismutase. These data suggest an integral role for monocyte lipoxygenase in the generation by activated monocytes of the extracellular superoxide anion that participates in the oxidation of LDL and the conversion of LDL to a cytotoxin. Monocyte-modified LDL may be a mediator in tissue damage that accompanies atherosclerosis or occurs at sites of inflammation.  相似文献   

3.
Tumour necrosis factor (TNF), a lymphokine released by activated macrophages, has diverse effects on a wide variety of cell types. TNF exerts these effects via specific cell surface receptors; however little is known of the biochemical events that ensue. We have shown that TNF rapidly induces the proto-oncogenes c-fos and c-jun in the adipogenic TA1 cell line and have used these responses to characterize the intracellular mediators of TNF action. We find that arachidonic acid, which is released in response to TNF, induces c-fos, but not c-jun mRNA in quiescent TA1 cells. Pretreatment of the cells with lipoxygenase inhibitors abolishes the induction of c-fos by TNF, while the induction of c-jun is unaffected; in contrast, a cyclooxygenase inhibitor has no effect on either response. Finally, we have demonstrated that TNF stimulates production of lipoxygenase metabolites in TA1 cells and that one of these, 5-HPETE, induces c-fos, but not c-jun. These data suggest that TNF activates two second messenger pathways, one of which is dependent on release of arachidonic acid and its subsequent conversion to a lipoxygenase metabolite.  相似文献   

4.
Macrophages release a variety of arachidonic acid metabolites after treatment with various membrane triggers or particulate stimuli. We examined the role of phospholipase and lipoxygenase inhibitors in the modulation of superoxide production and tumor cytolysis by murine macrophages. Superoxide was induced by the soluble stimulus, phorbol myristate acetate (PMA), and the particulate stimulus, opsonized zymosan, and was measured by the reduction of ferricytochrome c with the use of a micro ELISA reader. Macrophage-mediated tumor cytolysis was induced by hybridoma-derived, macrophage-activating factor (MAF) and was quantitated by 51Cr release from P815 target cells. In both assays, 72-hr peptone-elicited macrophages were used. Dexamethasone, and to a lesser degree hydrocortisone, inhibited superoxide release and MAF-induced tumor cytolysis. Inhibition in the superoxide assay required pretreatment with corticosteroid. Only the gold compound, auranofin, inhibited superoxide when given simultaneously with stimulant. Other phospholipase inhibitors, including mepacrine and 4-bromophenacyl bromide, and several lipoxygenase inhibitors, including BW755c, nordihydroguaiaretic acid (NDGA), and 5,8,11,14-eicosatetraynoic acid (ETYA), failed to modulate either macrophage response at nontoxic concentrations. At the concentrations tested in the tumoricidal and superoxide assays, mepacrine and 4-bromophenacyl bromide inhibited the release of 14C-arachidonic acid from macrophages stimulated with opsonized zymosan. Our data strongly suggest that corticosteroids suppress macrophage superoxide production and tumoricidal function by a nonphospholipase-dependent mechanism.  相似文献   

5.
The mechanism involved in the stimulation of NADPH-oxidase by arachidonic acid (AA) in intact human neutrophils was studied and compared with that involved in a cell-free system. [3H]-AA was released from pre-labeled cells upon AA stimulation, and phospholipase A2 inhibitors reduced in parallel the release of [3H]-AA and superoxide. Cyclooxygenase, lipoxygenase or protein kinase inhibitors failed to affect either response. In a cell-free system, no release of [3H]-AA was observed after AA addition, whereas NADPH-oxidase was activated; the generation of superoxide was not inhibited by phospholipase inhibitors and was not initiated by adding phospholipase A2 to the preparation. Thus AA stimulates NADPH-oxidase through a phospholipase A2 mediated pathway in intact cells, but activates the oxidase independent of phospholipase A2 in a broken cell system, suggesting distinctive mechanisms of activation for each system.  相似文献   

6.
Cytokines such as tumor necrosis factor (TNF), interleukin-1 (IL-1), and gamma-interferon (IF) are produced by activated hematopoietic cells. They possess antiviral activity and have other biological activities such as induction of cell proliferation and hemorrhagic necrosis of tumors. Since herpes simplex virus (HSV) infection of human vascular cells is known to produce a biochemical and cytopathological effect virtually indistinguishable from atherosclerosis, we hypothesized that these cytokines many prevent cholesteryl ester (CE) accumulation in arterial smooth muscle cells (SMC) that is seen with herpesvirus infection. We now report that TNF and IL-1 but not gamma-IF prevent CE accumulation in HSV-infected arterial SMC by induction of cyclic AMP-dependent CE hydrolysis. This effect is mediated through the arachidonate 12-lipoxygenase pathway via 12-HETE since pretreatment of cells with several lipoxygenase inhibitors abolishes the antiviral effect and 12-HETE is the major (greater than 99%) lipoxygenase metabolite produced by these cells. This conclusion is further based on our observations that TNF and IL-1 enhance 12-HETE production in SMC and that 12-HETE significantly increases both intracellular cyclic AMP and lysosomal CE hydrolysis. Moreover, dibutyryl cyclic AMP restored a normal phenotype in these virally infected cells. Collectively, these findings identify for the first time a biochemical mechanism involved in the reduction of lipid accumulation in virally infected arterial SMC by these potent cytokines.  相似文献   

7.
8.
Lipoxygenase activity and superoxide (O.?2) production by microsomal membranes and cytosol from bean cotyledons increased in parallel as senescence progressed. Superoxide production was heat denaturable and dependent on the availability of linoleate, the substrate for lipoxygenase. The specific inhibitor of lipoxygenase, U28938, caused a parallel reduction in enzyme activity and the formation of O?2. These observations demonstrate that lipoxygenase activity mediates the formation of superoxide anion, and support the contention that membrane senescence is attributable to a sequence of reactions in which lipasederived fatty acids are utilized by lipoxygenase to generate O?2 and hydroperoxides.  相似文献   

9.
Brugia malayi L3 molt to the L4 stage in serum-free cultures supplemented with arachidonic, linoleic, or linolenic acids and the basidiomycetous yeast Rhodotorula minuta. These fatty acids are capable of entering the eicosanoid pathway of arachidonate metabolism, the pathway responsible for generating a number of biologically active mediators, including prostaglandins, leukotrienes, and lipoxins. To determine whether this pathway was required for L3 development, we added dual inhibitors of cyclooxygenase and lipoxygenase to in vitro cultures containing B. malayi L3. These compounds significantly inhibited L3 molting. To evaluate whether 1 or both of these pathways of arachidonate metabolism were involved in molting, we tested drugs inhibiting either cyclooxygenase or lipoxygenase. Lipoxygenase inhibitors blocked L3 molting, whereas cyclooxygenase inhibitors did not. To assess whether enzymes operating downstream of lipoxygenase were also involved in L3 molting, we added inhibitors of enzymes involved in leukotriene synthesis and found they were also capable of preventing development. We tested the same inhibitor panel on Dirofilaria immitis L3. A single lipoxygenase inhibitor and inhibitors of 2 different enzymes operating downstream of lipoxygenase disrupted D. immitis development. These results demonstrate that a lipoxygenase pathway product is required for molting of the infective stage larvae of filarial parasites.  相似文献   

10.
Soybean lipoxygenase is shown to catalyze the breakdown of polyunsaturated fatty acid hydroperoxides to produce superoxide radical anion as detected by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In addition to the DMPO/superoxide radical adduct, the adducts of peroxyl, acyl, carbon-centered, and hydroxyl radicals were identified in incubations containing linoleic acid and lipoxygenase. These DMPO radical adducts were observed just prior to the system becoming anaerobic. Only a carbon-centered radical adduct was observed under anaerobic conditions. The superoxide radical production required the presence of fatty acid substrates, fatty acid hydroperoxides, active lipoxygenase, and molecular oxygen. Superoxide radical production was inhibited when nordihydroguaiaretic acid, butylated hydroxytoluene, or butylated hydroxyanisole was added to the incubation mixtures. We propose that polyunsaturated fatty acid hydroperoxides are reduced to form alkoxyl radicals and that after an intramolecular rearrangement, the resulting hydroxyalkyl radical reacts with oxygen, forming a peroxyl radical which subsequently eliminates superoxide radical anion.  相似文献   

11.
Although members of the class I phosphoinositide 3-kinases (PI3Ks) have been implicated in neutrophil inflammatory responses, the contribution of the individual PI3K isoforms in neutrophil activation has not been tractable with the non-selective inhibitors, LY294002 and wortmannin. We have developed a novel series of PI3K inhibitors that is selective for PI3K delta, an isoform expressed predominantly in hematopoietic cells. In addition to being selective between members of class I PI3Ks, representatives of these inhibitors such as IC980033 and IC87114 did not inhibit any protein kinases tested. Utilizing these inhibitors we report here a novel role for PI3K delta in neutrophil activation. Inhibition of PI3K delta with IC980033 and IC87114 blocked both fMLP- and TNF1 alpha-induced neutrophil superoxide generation and elastase exocytosis. The PI3K delta inhibitor IC87114 also blocked TNF1 alpha-stimulated elastase exocytosis from neutrophils in a mouse model of inflammation. To our knowledge, this is the first in vivo efficacy demonstration of a PI3K delta inhibitor in an animal model. Inhibition of PI3K delta, however, had no effect on in vitro neutrophil bactericidal activity and Fc gamma R-stimulated superoxide generation. Thus, PI3K delta plays an essential role in certain signaling pathways of neutrophil activation and appears to be an attractive target for the development of an anti-inflammatory therapeutic.  相似文献   

12.
We have been studying the mechanisms involved in the oxidative modification of low density lipoprotein (LDL) that lead to its transformation to a cytotoxic complex. Here we examine the direct effect-of soybean lipoxygenase (SLO), a 15-lipoxygenase, on normal human LDL. SLO oxidized LDL and rendered it cytotoxic; agents known to interfere with lipoxygenase activity inhibited this reaction. Enhancement of both the SLO-mediated LDL oxidation and the conversion of LDL to a cytotoxin was observed when either superoxide dismutase or copper (II) (3,5,-diisopropylsalicylic acid)2, both of which dismute superoxide anion, were included during the incubation of SLO with LDL. In contrast, catalase inhibited this reaction in the presence or absence of agents that dismute superoxide anion. Thus, purified lipoxygenase can mediate LDL modification and superoxide anion inhibits this reaction, Furthermore, H2O2 is essential for SLO-mediated LDL oxidation and conversion of LDL to a cytotoxin.  相似文献   

13.
Tumor necrosis factor (TNF) is a 17-kDa protein produced by endotoxin-stimulated macrophages. We have demonstrated that recombinant human TNF activates human macrophages to kill intracellular bacteria of the Mycobacterium avium complex (MAC) in a dose-related manner. TNF also primed macrophages to produce superoxide anion (O2-) following treatment with phorbol esther PMA (0.1 micrograms/ml). To investigate the intracellular pathway involved in the TNF-mediated activation of mycobacteriostatic/mycobactericidal activity in macrophages, we used two different protein kinase C (PKC) inhibitors: H7 (10(-5)-10(7) M) and staurosporine (10(-7)-10(-9) M). Mellitin (1 and 100 mM) was used as a calmodulin inhibitor. Human peripheral blood-derived macrophages cultured for 7 days were treated with H7, mellitin, or staurosporine for 1 hr prior to incubation with TNF (10(3) U/ml). Twenty-four hours after treatment with TNF the O2- release was measured spectrophotometrically following exposure to PMA. Macrophages were infected with MAC and the viable intracellular bacilli were quantitated following 4 days of treatment with TNF. All PKC inhibitors suppressed O2- production after incubation with PMA. However, treatment with either PKC or calmodulin inhibitors did not influence the intracellular killing of M. avium by TNF-stimulated macrophages. Exposure of the macrophages to cGMP inhibitor but not to cAMP inhibitor significantly impaired the response to the stimulation with TNF. In contrast, incubation of macrophages with protein kinase A (PKA) had no effect on TNF-mediated mycobacteriostatic/mycobactericidal activity. These results suggest that the TNF-mediated mycobactericidal activity in cultured macrophages probably occurs by a PKC-independent mechanism.  相似文献   

14.
N-Acetyl chitohexaose (NACOS-6) was able to display chemotactic response of human neutrophils in vitro. In order to analyze the mechanism, a series of chemotaxis studies by means of neutrophils treated with inhibitors of phospholipase A2, cyclooxygenase, or lipoxygenase to NACOS-6 was conducted. The treatment of neutrophils with inhibitors of phospholipase A2 or cyclooxygenase resulted in decrease of number of migrated cells. However, the lipoxygenase inhibitors did not exhibit the same effect. On the other hand, the treatment of neutrophils with inhibitors of phospholipase A2 or lipoxygenase resulted in decrease of chemotactic response to Formyl-Met-Leu-Phe (FMLP), although the cyclooxygenase inhibitors did not inhibit chemotaxis of neutrophils. Neutrophils added to exogenous prostaglandin E2 (PGE2) caused an enhanced chemotactic response to NACOS-6. These results indicate that the mechanism of chemotactic response to NACOS-6 was different from that of FMLP, and that the response was enhanced by PGE2 released from the neutrophils with stimulation of NACOS-6.  相似文献   

15.
Lipoxygenation in rat brain?   总被引:5,自引:0,他引:5  
It has been previously claimed that rodent brain possesses lipoxygenase activity, based upon the structure of products which were formed from arachidonic acid and the inhibition of this activity by "lipoxygenase inhibitors." Our studies confirm that various positional isomers of hydroxyeicosatetraenoic acids (HETE) are formed (e.g., 15-, 12-, 11-, 9-, 8- and 5-HETE) by brain homogenate and that their production is inhibited by certain lipoxygenase inhibitors, such as nordihydroguaiaretic acid (NDGA) but not by cyclooxygenase or cytochrome P-450 inhibitors. However, stereochemical analysis indicated racemic distributions of these products suggesting that they were not formed by a lipoxygenase enzyme but rather by a peroxidative process. It should also be noted that the presence of 12(S)-lipoxygenase activity could be demonstrated by stereochemical analysis only when the brain was not perfused properly, indicating this activity was due to blood cell contamination. It is known that many lipoxygenase inhibitors are also capable of inhibiting peroxidative reactions apparently due to their free radical scavenging properties. For these reasons, it is essential that the stereochemical purity of purported lipoxygenase products be determined and that previous claims of lipoxygenase activity in mammalian brain be reexamined.  相似文献   

16.
The purpose of this study was to determine the source of reactive oxygen species (ROS) generation and the contribution of ROS to the apoptosis of RAW264.7 cells induced by cationic liposomes. Cationic liposome-induced apoptosis was inhibited by lipoxygenase inhibitors, but not inhibitors of NADPH-oxidase, xanthine oxidase or cyclooxygenase. ROS generation induced by cationic liposomes was also inhibited by the lipoxygenase inhibitor NDGA. Furthermore, lipid peroxidation was observed following liposome treatment, but the apoptosis was not inhibited by the antioxidant alpha-tocopherol. These findings suggested that lipoxygenase is responsible for ROS generation, and ROS but not lipid peroxidation acts as a key mediator in the progress of apoptosis induced by cationic liposomes.  相似文献   

17.
The results of this study, carried out with purified rat Leydig cells, indicate that there are no major differences in the stimulating effects of lutropin (LH) and luliberin (LHRH) agonists on steroidogenesis via mechanisms that are dependent on Ca2+. This was demonstrated by using inhibitors of calmodulin and the lipoxygenase pathways of arachidonic acid metabolism. All three calmodulin inhibitors used (calmidazolium, trifluoperazine and chlorpromazine) were shown to block LH- and LHRH-agonist-stimulated steroidogenesis. This probably occurred at the step of cholesterol transport to the mitochondria. Similarly, three lipoxygenase inhibitors (nordihydroguaiaretic acid, BW755c and benoxaprofen), inhibited both LH- and LHRH-agonist-stimulated steroidogenesis. The amounts of the inhibitors required were similar for LH- and LHRH-agonist-stimulated steroidogenesis. Steroidogenesis stimulated by the Ca2+ ionophore A23187 was also inhibited, but higher concentrations of the inhibitors were required. Indomethacin (a cyclo-oxygenase inhibitor) increased LHRH-agonist-stimulated steroidogenesis;this is consistent with the role of the products of arachidonic acid metabolism via the alternative, lipoxygenase, pathway. The potentiation of LH-stimulated testosterone production by LHRH agonist was unaffected by indomethacin or by lipoxygenase inhibitors at concentrations that inhibited LH-stimulated testosterone production by 75-100%. It was not possible to eliminate a role of calmodulin in modulating the potentiation, although higher concentrations of the inhibitors were generally required to negate the potentiation than to inhibit LH- or LHRH-agonist-stimulated testosterone production.  相似文献   

18.
Recent studies showed that soybean lipoxygenase inhibitors like phenidone and nordihydroguaiaretic acid (NDGA) reduce the catalytically active ferric lipoxygenase to its inactive ferrous form. Addition of 13(S)-hydroperoxy-cis-9,trans-11-octadecadienoic acid (13-HPOD) regenerated the active ferric form. In this paper, it is shown that in such a system the inhibitors are oxidized to free-radical metabolites. Incubation of soybean lipoxygenase and linoleic acid with p-aminophenol, catechol, hydroquinone, NDGA, or phenidone resulted in the formation of the one-electron oxidation products of these compounds. Free-radical formation depended upon the presence of the lipoxygenase and 13-HPOD. The free radicals were detected by ESR spectroscopy, and their structure was confirmed by analysis of the spectra, using a computer correlation technique. These data support the proposed mechanism for the inhibition of lipoxygenase by phenolic antioxidants.  相似文献   

19.
To gain insight into the mechanism of formation of chromosomal aberrations by the tumor promoter phorbolmyristate acetate (PMA) in human lymphocytes, we investigated the effect of antioxidants and inhibitors of arachidonic acid metabolism. Among the antioxidants bovine erythrocyte CuZn superoxide dismutase, glutathione peroxidase, mannitol (a scavenger of hydroxyl radicals), butylated hydroxytoluene and butylated hydroxyanisole were anticlastogenic while catalase and dimethylfuran (a scavenger of singlet oxygen) were inactive. These results show that the induction of aberrations by PMA occurs via indirect action, i.e. the intermediacy of superoxide and hydroxyl radicals. The following inhibitors of arachidonic acid metabolism were strongly anticlastogenic: the cyclo-oxygenase inhibitors indomethacin and flufenamic acid and the lipoxygenase inhibitor BN1015. Imidazole, nordihydroguaiaretic acid BN 1048 and 5,8,11,14-eicosatetraynoic acid were moderately active. The inhibitor of phospholipase A2, fluocinolone acetonide, was also anticlastogenic.

We conclude that the oxidative metabolism of arachidonic acid is involved in the induction of chromosomal aberrations by PMA in human lymphocytes. However, because of the limited selectivity of these drugs, it is not yet possible to identify unambiguously the step(s) in the arachidonic acid cascade responsible for PMA clastogenicity.  相似文献   


20.
Tumor necrosis factor (TNF) induces synthesis of manganese superoxide dismutase (MnSOD). It was previously shown that overexpression of MnSOD protected some mammalian cells from TNF cytotoxicity. The purpose of this study was to establish whether MnSOD was increased in cells selected for resistance to cytolysis by TNF in combination with cycloheximide. Melanoma SK-MEL-109 and HeLa cell-resistant variants were selected by repeated treatments with TNF and cycloheximide. The SK-MEL-109 variants had relatively low levels of MnSOD that were inducible by TNF. Surprisingly, the HeLa variants had very low levels of MnSOD that were poorly inducible by either TNF or interleukin-1 alpha. Therefore, an elevated level of MnSOD was not required to protect these cells from TNF-mediated cytolysis. The HeLa variants were more sensitive than parental cells to superoxide radical (O2-) generating compounds, such as paraquat or xanthine/xanthine oxidase. Pretreatment of these variants with TNF did not provide protection against damage by superoxide radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号