首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Elevated intraocular pressure is the main risk factor in primary open-angle glaucoma, involving an increased resistance to aqueous humor outflow in the juxtacanalicular region of the conventional outflow pathway which includes the trabecular meshwork (TM) and the inner wall of Schlemm's canal (SC). Previously, sphingosine-1-phosphate (S1P) was shown to decrease outflow facility in porcine and human eyes, thus increasing outflow resistance and intraocular pressure. Owing to S1P's known effect of increasing barrier function in endothelial cells and the robust expression of the S1P? receptor on the inner wall of SC, we hypothesized that S1P? receptor activation promotes junction formation and decreases outflow facility. The effects of subtype-specific S1P receptor compounds were tested in human and porcine whole-eye perfusions and human primary cultures of SC and TM cells to determine the receptor responsible for S1P effects on outflow resistance. The S1P?-specific agonist SEW2871 failed to both mimic S1P effects in paired human eye perfusions, as well as increase myosin light chain (MLC) phosphorylation in cell culture, a prominent outcome in S1P-treated SC and TM cells. In contrast, the S1P? antagonist JTE-013, but not the S1P? or S1P?,? antagonists, blocked the S1P-promoted increase in MLC phosphorylation. Moreover, JTE-013 prevented S1P-induced decrease in outflow facility in perfused human eyes (P < 0.05, n = 6 pairs). Similarly, porcine eyes perfused with JTE-013 + S1P did not differ from eyes with JTE-013 alone (P = 0.53, n = 3). These results demonstrate that S1P? , and not S1P? or S1P?, receptor activation increases conventional outflow resistance and is a potential target to regulate intraocular pressure.  相似文献   

2.
We speculated that the sphingosine-1-phosphate (S1P) receptor S1P(2), which uniquely inhibits cell migration, might mediate inhibitory effects on endothelial cell migration and angiogenesis, different from S1P(1) and S1P(3). Mouse vascular endothelial cells, which endogenously express S1P(2) and S1P(3), but not S1P(1), responded to S1P and epidermal growth factor (EGF) with stimulation of Rac, migration, and the formation of tube-like structures on the Matrigel. The S1P(3)-antagonist VPC-23019 abolished S1P-induced, G(i)-dependent Rac stimulation, cell migration, and tube formation, whereas the S1P(2)-antagonist JTE-013 enhanced these S1P-induced responses, suggesting that S1P(2) exerts inhibitory effects on endothelial Rac, migration, and angiogenesis. S1P(2) overexpression markedly augmented S1P-induced, G(i)-independent inhibition of EGF-induced migration and tube formation. Finally, the blockade of S1P(2) by JTE-013 potentiated S1P-induced stimulation of angiogenesis in vivo in the Matrigel implant assay. These observations indicate that in contrast to S1P(1) and S1P(3), S1P(2) negatively regulates endothelial morphogenesis and angiogenesis most likely through down-regulating Rac.  相似文献   

3.
Accumulation of extracellular matrix including fibronectin in mesangium is one of the major pathologic characteristics in diabetic nephropathy. In the current study, we explored role of sphingosine-1-phosphate (S1P) receptor in fibronectin expression and underlying molecular mechanism. Among five S1P receptors the mRNA level of S1P2 receptor was the most abundant in kidney of diabetic rats and mesangial cells under high glucose condition. S1P augmentation of fibronectin was significantly inhibited by S1P2 receptor antagonist JTE-013 and S1P2-siRNA. S1P-stimulated fibronectin expression was remarkably blocked by ERK1/2 inhibitor PD98059 and p38MAPK inhibitor SB203580. Phospho-ERK1/2 and phospho-p38MAPK level induced by S1P were markedly abrogated by JTE-013 and S1P2-siRNA. In conclusion, S1P2 receptor was significantly up-regulated under diabetic condition. S1P2 receptor mediated fibronectin expression through the activation of S1P-S1P2-MAPK (ERK1/2 and p38MAPK) axis in mesangial cells under high glucose condition, suggesting that it might be a potential therapeutic target for diabetic nephropathy treatment.  相似文献   

4.
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, has been shown to be increased in bronchoalveolar lavage fluid after allergen challenge in asthmatic patients. Here, we examined S1P actions and their intracellular signalings in cultured human bronchial smooth muscle cells (BSMCs). Expression of mRNAs of three subtypes of S1P receptors, including S1P(1), S1P(2), and S1P(3), was detected in BSMCs, and exposure of the cells to S1P inhibited platelet-derived growth factor (PDGF)-induced migration and tumor necrosis factor-alpha-induced RANTES production. S1P also inhibited PDGF-induced Rac1 activation, and dominant negative Rac1 inhibited PDGF-induced migration. On the other hand, dominant negative Galpha(q) attenuated the S1P-induced inhibition of RANTES production. Finally, an S1P(2)-selective antagonist, JTE-013, suppressed the S1P-induced inhibition of migration response and RANTES production. These results suggest that S1P attenuates cell migration by inhibiting a Rac1-dependent signaling pathway and decreases RANTES production by stimulating a Galpha(q)-dependent mechanism both possibly through the S1P(2) receptors.  相似文献   

5.
Sphingosine 1-phosphate (Sph-1-P), a bioactive lysophospholipid capable of inducing a wide spectrum of biological responses, acts as an intercellular mediator, through interaction with the endothelial differentiation gene (EDG)/S1P family of G protein-coupled receptors. In this study, the effects of JTE-013, a specific antagonist of the migration-inhibitory receptor EDG-5, on Sph-1-P-elicited responses were examined in human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (SMCs), which expressed EDG-5 protein weakly and abundantly, respectively. This pyrazolopyridine compound reversed the inhibitory effect of Sph-1-P on SMC migration and further enhanced Sph-1-P-stimulated HUVEC migration. In contrast, its effect on Sph-1-P-induced intracellular Ca(2+) mobilization was marginal. Our results indicate that specific regulation of Sph-1-P-modulated migration responses in vascular cells can be achieved by EDG-5 antagonists and that manipulation of Sph-1-P biological activities by each EDG antagonist may lead to a therapeutical application to control vascular diseases.  相似文献   

6.
To analyze the involvement in allergic reactions of platelets and sphingosine 1-phosphate (Sph-1-P), a lysophospholipid mediator released from activated platelets, the effects of Sph-1-P and a supernatant prepared from activated platelets on mast cell line RBL-2H3 were examined. Sph-1-P strongly inhibited the migration of both non-stimulated and fibronectin-stimulated RBL-2H3 cells, which was reversed by JTE-013, a specific antagonist of G protein-coupled Sph-1-P receptor S1P(2); S1P(2) was confirmed to be expressed in these cells. A similar anti-motility effect of Sph-1-P was observed in a phagokinetic assay. Consistent with these results, treatment of RBL-2H3 cells with Sph-1-P resulted in a rounded cell morphology, which was blocked by JTE-013. Under the present conditions, Sph-1-P failed to induce intracellular Ca(2+) mobilization or histamine degranulation, responses postulated to be elicited by intracellular Sph-1-P. Importantly, the Sph-1-P effect, i.e., the regulation of RBL-2H3 cell motility, was mimicked by the supernatant (both with and without boiling) prepared from activated platelets, and this effect of the supernatant was also blocked by JTE-013. Our results suggest that the motility of mast cells can be regulated by Sph-1-P and also platelets (which release Sph-1-P), via cell surface receptor S1P(2) (not through intracellular Sph-1-P actions, postulated previously in the same cells).  相似文献   

7.
1. In isolated perfused rat liver, infusion of UTP (20 microM) led to a transient, about sevenfold stimulation of thromboxane release (determined as thromboxane B2), which did not parallel the time course of the UTP-induced stimulation of glucose release. An increased thromboxane release was also observed after infusion of ATP (20 microM). Although the maximal increase of portal pressure following ATP was much smaller than with UTP (4.2 vs 11.5 cm H2O), the peak thromboxane release was similar with both nucleotides. 2. Indomethacin (10 microM) inhibited the UTP-induced stimulation of thromboxane release and decreased the UTP-induced maximal increase of glucose output and of portal pressure by about 30%. The thromboxane A2 receptor antagonist BM 13.177 (20 microM) completely blocked the pressure and glucose response to the thromboxane A2 analogue U-46619 (200 nM) and decreased the ATP- and UTP-induced stimulation of glucose output by about 25%, whereas the maximal increase of portal pressure was inhibited by about 50% and 30%, respectively. BM 13.177 and indomethacin inhibited the initial nucleotide-induced overshoot of portal pressure increase, but had no effect on the steady-state pressure increase which is obtained about 5 min after addition of ATP or UTP. 3. The leukotriene D4/E4 receptor antagonist LY 171883 (50 microM) inhibited not only the glucose and pressure response of perfused rat liver to leukotriene D4, but also to leukotriene C4 by about 90%. This suggests that leukotriene D4 (not C4) is the active metabolite in perfused liver and the effects of leukotriene C4 are probably due to its rapid conversion to leukotriene D4. LY 171883 also inhibited the response to the thromboxane A2 analogue U-46619 by 75-80%, whereas the response of perfused liver to leukotriene C4 was not affected by the thromboxane receptor antagonist BM 13.177 (20 microM). The glucose and pressure responses of the liver to extracellular UTP were inhibited by LY 171883 and by BM 13.177 by about 30%. This suggests that the inhibitory action of LY 171883 was due to a thromboxane receptor antagonistic side-effect and that peptide leukotrienes do not play a major role in mediating the UTP response. 4. In isolated rat hepatocytes extracellular UTP (20 microM), ATP (20 microM), cyclic AMP (50 microM) and prostaglandin F2 alpha (3 microM) increased glycogen phosphorylase a activity by more than 100%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Liu X  Yue S  Li C  Yang L  You H  Li L 《Journal of cellular physiology》2011,226(9):2370-2377
The biological roles of sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs) have been broadly investigated. However, at present pathophysiological roles of S1P/S1PRs axis in liver fibrosis are not well defined. Here, we investigated the functions of S1P/S1PRs axis in human hepatic stellate cells (HSC) line, LX-2 cells. We found that S1PR types 1, 2 and 3 (S1PR1-3) are clearly detected in LX-2 cells, as determined by RT-PCR, Western blot and immunocytochemistry analysis. S1P exerted a powerful migratory action on LX-2 cells, as determined in Boyden chambers, and stimulated fibrogenic activity of LX-2 cells, as demonstrated by increase of expression of smooth muscle α-actin, procollagen α1(I) and α1(III) and total hydroxyproline content. Moreover, the effects of S1P were mimicked by S1PR1 agonist SEW2871, and abrogated by W146 (S1PR1 antagonist) and/or silencing S1PR1, three expression with small interfering RNA, suggesting the main roles of S1PR1 and 3. However, studies with S1PR2 antagonist JTE-013 and silencing S1PR2 expression indicated that S1PR2 negatively regulated S1P-induced cell migration. Interestingly, exogenously added S1P induced significant up-regulation of sphingosine kinase-1 and the synthesis of additional S1P, and expression of S1PR1,3, but not S1PR2. In conclusion, our data have identified an additional function regulated by S1P/S1PR1,3 axis involving migration and fibrogenic activation of HSCs. These results suggest that selective modulation of S1PR activity may represent a new antifibrotic strategy.  相似文献   

9.
Thromboxane A2 (TxA2) is a potent vasoconstrictor and has been implicated as a mediator of liver diseases such as ischemic-reperfusion injury. We determined the effects of TxA2 and the well-known hepatic venoconstrictor histamine, on the vascular resistance distribution and liver weight in isolated canine livers perfused with blood via the portal vein. The stable TxA2 (STA2; 20 μg, n=5) and histamine (5 μg, n=6) similarly increased the hepatic total vascular resistance, 2.5- and 2.4-fold, respectively. The increase in the hepatic venous resistance was significantly greater than that of the portal resistance (threefold vs. 1.9-fold for STA2; threefold vs. 1.8-fold for histamine). Predominant hepatic venoconstriction induced by both agents was confirmed in livers perfused in a reverse direction from the hepatic vein to the portal vein, as shown by marked precapillary vasoconstriction. STA2 transiently increased liver weight loss (−3.6 g/100g liver weight), followed by a gradual weight gain (9.0 g/100 g). Histamine caused a progressive weight gain (9.1 g/100 g). In conclusion, similar to histamine, TxA2 constricts predominantly the hepatic vein in isolated canine livers.  相似文献   

10.
Connective tissue growth factor (CTGF), a member of the CCN family of secreted matricellular proteins, regulates fibrosis, angiogenesis, cell proliferation, apoptosis, tumor growth, and metastasis. However, the role of CTGF and its regulation mechanism in Wilms' tumor remains largely unknown. We found that the bioactive lipid sphingosine-1-phosphate (S1P) induced CTGF expression in a concentration- and time-dependent manner in a Wilms' tumor cell line (WiT49), whereas FTY720-phosphate, an S1P analogue that binds all S1P receptors except S1P2, did not. Further, the specific S1P2 antagonist JTE-013 completely inhibited S1P-induced CTGF expression, whereas the S1P1 antagonist VPC44116 did not, indicating that this effect was mediated by S1P2. This was confirmed by adenoviral transduction of S1P2 in WiT49 cells, which showed that overexpression of S1P2 increased the expression of CTGF. Induction of CTGF by S1P was sensitive to ROCK inhibitor Y-27632 and c-Jun NH2-terminal kinase inhibitor SP600125, suggesting the requirement of RhoA/ROCK and c-Jun NH2-terminal kinase pathways for S1P-induced CTGF expression. Interestingly, the expression levels of CTGF were decreased in 8 of 10 Wilms' tumor tissues compared with matched normal tissues by quantitative real-time PCR and Western blot analysis. In vitro, human recombinant CTGF significantly inhibited the proliferation of WiT49 cells. In addition, overexpression of CTGF resulted in significant inhibition of WiT49 cell growth. Taken together, these data suggest that CTGF protein induced by S1P2 might act as a growth inhibitor in Wilms' tumor.  相似文献   

11.
Lipid mediators, thromboxane A2 (TxA2) and platelet-activating factor (PAF), are potent vasoconstrictors, and have been implicated as mediators of liver diseases, such as ischemic-reperfusion injury. We determined the effects of a TxA2 analogue (U-46619) and PAF on the vascular resistance distribution and liver weight (wt) in isolated guinea pig livers perfused with blood via the portal vein. The sinusoidal pressure was measured by the double occlusion pressure (P(do)), and was used to determine the pre- (R(pre)) and post-sinusoidal (R(post)) resistances. U-46619 and PAF concentration-dependently increased the hepatic total vascular resistance (R(t)). The minimum concentration at which significant vasoconstriction occurs was 0.001 microM for PAF and 0.1 microM for U-46619. Moreover, the concentration of U-46619 required to increase R(t) to the same magnitude is 100 times higher than PAF. Thus, the responsiveness to PAF was greater than that to U-46619. Both agents increased predominantly R(pre) over R(post). U-46619 caused a sustained liver weight loss. In contrast, PAF also caused liver weight loss at lower concentrations, but it produced liver weight gain at higher concentrations (2.5 +/- 0.3 per 10g liver weight at 1 microM PAF), which was caused by substantial post-sinusoidal constriction and increased P(do). In conclusion, both TxA2 and PAF contract predominantly the pre-sinusoidal veins. TxA2 causes liver weight loss, while PAF at high concentrations increases liver weight due to substantial post-sinusoidal constriction in isolated guinea pig livers.  相似文献   

12.
Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound.  相似文献   

13.
We investigated mechanisms for inhibition of B16 melanoma cell migration and invasion by sphingosine-1-phosphate (S1P), which is the ligand for the Edg family G protein-coupled receptors and also implicated as an intracellular second messenger. S1P, dihydro-S1P, and sphingosylphosphorylcholine inhibited B16 cell migration and invasion with the relative potencies expected as S1P2 receptor agonists. The S1P2-selective antagonist JTE013 completely abolished the responses to these agonists. In addition, JTE013 abrogated the inhibition by sphingosine, which is the S1P precursor but not an agonist for S1P receptors, indicating that the sphingosine effects were mediated via S1P2 stimulation, most likely by S1P that was converted from sphingosine. S1P induced inhibition and activation, respectively, of Rac and RhoA in B16 cells, which were abrogated by JTE013. Adenovirus-mediated expression of N17Rac mimicked S1P inhibition of migration, whereas C3 toxin pretreatment, but not Rho kinase inhibitors, reversed the S1P inhibition. Overexpression of S1P2 sensitized, and that of either S1P1 or S1P3 desensitized, B16 cells to S1P inhibition of Rac and migration. In JTE013-pretreated, S1P3-overexpressing B16 cells, S1P stimulated cellular RhoA but failed to inhibit either Rac or migration, indicating that RhoA stimulation itself is not sufficient for inhibition of migration. These results provide compelling evidence that endogenously expressed S1P2 negatively regulates cell motility and invasion through ligand-dependent reciprocal regulation of cellular Rac and RhoA activities. In the presence of JTE013, S1P instead stimulated Rac and migration in B16 cells that overexpress either S1P1 or S1P3, unveiling counteractions between S1P2 and S1P1 or S1P3 chemotactic receptor.  相似文献   

14.
Eleven new sphingosine 1-phosphate receptor 2 (S1PR2) ligands were synthesized by modifying lead compound N-(2,6-dichloropyridin-4-yl)-2-(4-isopropyl-1,3-dimethyl-1H-pyrazolo[3,4-b]pyridin-6-yl)hydrazine-1-carboxamide (JTE-013) and their binding affinities toward S1PRs were determined in vitro using [32P]S1P and cell membranes expressing recombinant human S1PRs. Among these ligands, 35a (IC50?=?29.1?±?2.6?nM) and 35b (IC50?=?56.5?±?4.0?nM) exhibit binding potency toward S1PR2 comparable to JTE-013 (IC50?=?58.4?±?7.4?nM) with good selectivity for S1PR2 over the other S1PRs (IC50?>?1000?nM). Further optimization of these analogues may identify additional and more potent and selective compounds targeting S1PR2.  相似文献   

15.
To test whether hemorrhagic shock and resuscitation (HSR) alters the vascular responsiveness of the portohepatic circulation to endothelins (ETs), we studied the macro- and microcirculatory effects of the preferential ET(A) receptor agonist ET-1 and of the selective ET(B) receptor agonist sarafotoxin 6c (S6c) after 1 h of hemorrhagic hypotension and 5 h of volume resuscitation in the isolated perfused rat liver ex vivo using portal pressure-flow relationships and epifluorescence microscopy. Although HSR did not cause major disturbances of hepatic perfusion per se, the response to ET-1 (0.5 x 10(-9) M) was enhanced, leading to greater increases in portal driving pressure, total portal resistance, and zero-flow pressures and more pronounced decreases in portal flow, sinusoidal diameters, and hepatic oxygen delivery compared with time-matched sham shock controls. In sharp contrast, the constrictive response to S6c (0.25 x 10(-9) M) remained unchanged. Thus HSR primes the portohepatic circulation for the vasoconstrictive effects of ET-1 but does not alter the effects of the ET(B) receptor agonist S6c. The enhanced sinusoidal response may contribute to the subsequent development of hepatic microcirculatory failure after secondary insults that are associated with increased generation of ET-1.  相似文献   

16.
17.
Interstitial cells of Cajal (ICC) are the pacemaker cells that generate the rhythmic oscillation responsible for the production of slow waves in gastrointestinal smooth muscle. Spingolipids are known to present in digestive system and are responsible for multiple important physiological and pathological processes. In this study, we are interested in the action of sphingosine 1-phosphate (S1P) on ICC. S1P depolarized the membrane and increased tonic inward pacemaker currents. FTY720 phosphate (FTY720P, an S1P1,3,4,5 agonist) and SEW 2871 (an S1P1 agonist) had no effects on pacemaker activity. Suramin (an S1P3 antagonist) did not block the S1P-induced action on pacemaker currents. However, JTE-013 (an S1P2 antagonist) blocked the S1P-induced action. RT-PCR revealed the presence of the S1P2 in ICC. Calphostin C (a protein kinase C inhibitor), NS-398 (a cyclooxygenase-2 inhibitor), PD 98059 (a p42/44 inhibitor), or SB 203580 (a p38 inhibitor) had no effects on S1P-induced action. However, c-jun NH2-terminal kinase (JNK) inhibitor II suppressed S1P-induced action. External Ca2+-free solution or thapsigargin (a Ca2+-ATPase inhibitor of endoplasmic reticulum) suppressed action of S1P on ICC. In recording of intracellular Ca2+ ([Ca2+]i) concentration using fluo-4/AM S1P increased intensity of spontaneous [Ca2+]i oscillations in ICC. These results suggest that S1P can modulate pacemaker activity of ICC through S1P2 via regulation of external and internal Ca2+ and mitogenactivated protein kinase activation.  相似文献   

18.
Sphingosine 1-phosphate (S1P) is a potent sphingolipid mediator that acts through five cognate G protein-coupled receptors (S1P1-S1P5) and regulates many critical biological processes. Recent studies indicated that S1P at nanomolar concentrations significantly reduces cytokine-induced apoptosis of pancreatic β-cells in which genes for S1P1-S1P4 are co-expressed. However, the S1P receptor subtype(s) involved in this effect remains to be clarified. In this study, we investigated the potential role of S1P2 in streptozotocin (STZ)-induced apoptosis of pancreatic β-cells and progression of diabetes. S1P2-deficient (S1P2-/-) mice displayed a greater survive ability, lower blood glucose levels, and smaller numbers of TUNEL-positive apoptotic β-cells to administration of a high dose of STZ than wild-type (WT) mice. S1P2-/- mice showed higher insulin/glucose ratios (an index of relative insulin deficiency) and larger insulin-positive islet areas to administration of a low dose of STZ than WT mice. Moreover, administration of JTE-013, a S1P2-specific antagonist, to WT mice ameliorated STZ-induced blood glucose elevation and reduced the incidence of diabetes. Our findings indicate that blockade of S1P2 signaling attenuates STZ-induced apoptosis of pancreatic β-cells and decreases the incidence of diabetes.  相似文献   

19.
20.
Sphingosine 1-phosphate (S1P) rapidly increases endothelial barrier function and induces the assembly of the adherens junction proteins vascular endothelial (VE)-cadherin and catenins. Since VE-cadherin contributes to the stabilization of the endothelial barrier, we determined whether the rapid, barrier-enhancing activity of S1P requires VE-cadherin. Ca(2+)-dependent, homophilic VE-cadherin binding of endothelial cells, derived from human umbilical veins and grown as monolayers, was disrupted with EGTA, an antibody to the extracellular domain of VE-cadherin, or gene silencing of VE-cadherin with small interfering RNA. All three protocols caused a reduction in the immunofluorescent localization of VE-cadherin at intercellular junctions, the separation of adjacent cells, and a decrease in basal endothelial electrical resistance. In all three conditions, S1P rapidly increased endothelial electrical resistance. These findings demonstrate that S1P enhances the endothelial barrier independently of homophilic VE-cadherin binding. Junctional localization of VE-cadherin, however, was associated with the sustained activity of S1P. Imaging with phase-contrast and differential interference contrast optics revealed that S1P induced cell spreading and closure of intercellular gaps. Pretreatment with latrunculin B, an inhibitor of actin polymerization, or Y-27632, a Rho kinase inhibitor, attenuated cell spreading and the rapid increase in electrical resistance induced by S1P. We conclude that S1P rapidly closes intercellular gaps, resulting in an increased electrical resistance across endothelial cell monolayers, via cell spreading and Rho kinase and independently of VE-cadherin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号