首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Free calcium wave upon activation in Xenopus eggs   总被引:16,自引:0,他引:16  
Eggs of Xenopus laevis were preloaded with aequorin and the spatial and temporal pattern of free calcium release in the egg cortex on artificial activation was determined by the aequorin luminescence emitted from the thin cortical layer of naturally opaque eggs. The aequorin luminescence was detected with a photonic microscope system consisting of a light microscope and a two-dimensional photon-counting system with an image processor. A free calcium increase was initiated around the point of prick activation. The state of increased Ca2+ propagated in the cortical cytoplasm of the egg as a wave with a velocity of about 8 micron/sec at 22 degrees C. This wave reached the antipode by 5 to 6 min of prick activation. The spatial pattern of the Ca2+ wave was similar to that of changes in brightness of the egg surface on activation, termed the "activation wave" by K. Hara and P. Tydeman (1979, Wilhelm Roux's Arch. Dev. Biol. 186, 91-94). To examine the temporal correlation between the Ca2+ wave and the activation wave, images of aequorin luminescence and those of the egg cortex taken by incident light illumination were recorded alternately in the same egg. The zone of free calcium increase corresponded to the light (relaxation) zone of the activation wave, where exocytosis of cortical granules and elongation of microvilli were taking place.  相似文献   

2.
J Wagner  Y X Li  J Pearson    J Keizer 《Biophysical journal》1998,75(4):2088-2097
In the preceding paper Fontanilla and Nuccitelli (Biophysical Journal 75:2079-2087 (1998)) present detailed measurements of the shape and speed of the fertilization Ca2+ wave in Xenopus laevis eggs. In order to help interpret their results, we develop here a computational technique based on the finite element method that allows us to carry out realistic simulations of the fertilization wave. Our simulations support the hypothesis that the physiological state of the mature egg is bistable, i.e., that its cytoplasm can accommodate two alternative physiological Ca2+ concentrations: a low concentration characteristic of the prefertilization state and a greatly elevated concentration characteristic of the state following the passage of the wave. We explore this hypothesis by assuming that the bistability is due to the release and re-uptake properties of the endoplasmic reticulum (ER) as determined by inositol trisphosphate (IP3) receptor/Ca2+ channels and sarcoendoplasmic reticulum calcium ATPase (SERCA) pumps. When combined with buffered diffusion of Ca2+ in the cytoplasm, our simulations show that inhomogeneities in the Ca2+ release properties near the plasma membrane are required to explain the temporal and spatial dependences of the shape and speed of these waves. Our results are consistent with an elevated IP3 concentration near the plasma membrane in the unfertilized egg that is augmented significantly near the site of fertilization. These gradients are essential in determining the concave shape of the Ca2+ fertilization wave front.  相似文献   

3.
Digital imaging microscopy of fluo-3 fluorescence was used to study the velocity and shape of intracellular Ca2+ waves in isolated rat cardiomyocytes as a function of temperature. Decreasing the temperature from 37 to 17 degrees C reduced the longitudinal wave velocity by a factor of 1.8 and remarkably slowed the decay of [Ca2+]i in the trailing flank of a wave. Using image analysis, rise times, and half-maximum decay times of local Ca2+ transients, which characterize the processes of local Ca2+ release and removal, were determined as a function of temperature. Apparent activation energies for wave front propagation, local Ca2+ release, and local Ca2+ removal were derived from Arrhenius plots and amounted to -23, -28, and -46 kJ/mol, respectively. The high activation energy of Ca2+ removal, which arises from the activity of the sarcoplasmic reticulum (SR) Ca2+ ATPase, relative to those of longitudinal wave propagation and local Ca2+ release excludes the hypothetical mechanism of regenerative "spontaneous Ca2+ release," in which Ca2+ that has been taken up from the approaching wavefront triggers Ca2+ release at a luminal site of the SR. It is consistent, however, with the hypothesis that Ca2+ wave propagation is based on Ca(2+)-induced Ca2+ release where Ca2+ triggers release on the cytosolic face of the SR.  相似文献   

4.
We have used fluorescence ratio-imaging of fura-2 in the activating egg of Xenopus laevis to study the wave of increased intracellular free Ca2+ concentration ([Ca2+]i) while monitoring that of cortical granule exocytosis. Naturally matured eggs were dejellied, injected with fura-2, and activated by the iontophoresis of 1-30 nCoul of inositol-1,4,5-trisphosphate which triggers an immediate increase in free [Ca2+]i at the injection site. The Ca2+ rise spreads throughout the egg, reaching the opposite side in 5-8 min, and is followed by elevation of the fertilization envelope about 20-30 sec behind the [Ca2+]i wave. [Ca2+]i returns to preactivation levels within about 20 min after activation. We further studied the role of phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis by microinjecting antibodies to PIP2 into the egg. PIP2 antibodies did not alter the propagation velocity of the wave but greatly reduced the amount of Ca2+ released in the egg cortex. These data suggest that PIP2 hydrolysis plays a role in the release of [Ca2+]i in the outer regions of the egg following activation.  相似文献   

5.
We have developed a digital image processing technique based on highpass filtering of microfluorimetric images for selective transmission of fine image details corresponding to mitochondria. This technique enabled the detection of the mitochondrial calcium signals with high selectivity, simultaneously with the cytosolic calcium signal. The validity of this technique was supported in primary cultures of rat brain capillary endothelial cells loaded with X-rhod-1 by the results that (i) inhibition of the mitochondrial Ca2+ uptake by discharging the mitochondrial membrane potential selectively abolished the transient of the highpass filtered signal evoked by ATP, and (ii) CGP-37157, a selective blocker of the mitochondrial Na+/Ca2+ exchanger, increased the peak amplitude of highpass filtered (mitochondrial) Ca2+ transients and caused a sustained plateau. The highpass filtering technique enabled the analysis of the mitochondrial Ca2+ transients in high temporal resolution. We found a uniform and monophasic rise of [Ca2+] in the mitochondrial population of the cell, following the cytosolic [Ca2+] with a delay at onset and peak. The introduced highpass filtering technique is a powerful tool in the high spatial and temporal resolution analysis of mitochondrial calcium transients, and it could be especially important in specimens where genetically targeted probes fail.  相似文献   

6.
Calcium-sensitive dual excitation dyes, such as fura-2, are now widely used to measure the free calcium concentration ([Ca2+]) in living cells. Preferentially, [Ca2+] is calculated in a ratiometric manner, but if calcium images need to be acquired at high temporal resolution, a potential drawback of ratiometry is that it requires equally fast switching of the excitation light between two wavelengths. To circumvent continuous excitation switching, some investigators have devised methods for calculating [Ca2+] from single-wavelength measurements combined with the acquisition of a single ratiometric pair of fluorescence images at the start of the recording. These methods, however, are based on the assumption that the concentration of the dye does not change during the experiment, a condition that is often not fulfilled. We describe here a method of single-wavelength calcium imaging, in which the dye concentration is estimated from ratiometric fluorescence image pairs acquired at regular intervals during the recording period, that furthermore includes a correction for the changing dye concentration in the calculation of [Ca2+].  相似文献   

7.
A new principle is described for imaging intracellular free calcium [Ca2+]i changes in single, living cells utilizing the fluorescent probe Fura-2. It is based upon video color mixing in real time and allows high-speed visualization, at maximum image resolution, of [Ca2+]i changes without digital image ratioing. The epifluorescence images produced by 340 and 380 nm excitations are stored in two memory buffers of a personal computer-based image processing system. Two video signals are generated independently from each buffer and connected to the red and green inputs of a video display. An image is this way created, in which [Ca2+]i shows up as a specific hue, whereas changes in dye concentration, light intensity, cell thickness show up as variations in brightness of the imaged cells. The method has advantages over conventional ratio imaging, notably simplicity and speed, since no calculations are made. Yet it can be combined with traditional digital image processing. The imaging technique allows monitoring of [Ca2+]i changes in rapidly moving cells, like neutrophils. It is demonstrated that during random locomotion on serum-coated glass surfaces, [Ca2+]i levels appeared to oscillate and that the frequency of the oscillations are related to locomotive activity. Furthermore, in Ca2+ free medium, the cells continue to move and phagocytose in the presence of Ca2+ ionophore (ionomycin) and 2 mM EGTA. In the presence of 1 mM extracellular Ca2+, ionomycin-treated cells were not able to move or phagocytose.  相似文献   

8.
We describe here the use of a confocal laser scanning microscope for imaging fast dynamic changes of the intracellular calcium ion concentration ([Ca2+]i) in isolated ventricular cell pairs. The scanning apparatus of our system, paired galvanometer mirrors, can perform narrow band scanning of an area of interest at a high temporal resolution of less than 70 msec per image. The actual [Ca2+]i is obtained directly through the fluorescence intensity of injected fluo-3, which responds to changes of [Ca2+]i in optically sectioned unit volumes of the cell. Images of the calcium wave obtained during propagation between paired cells revealed that the wavefront is constant in shape and propagates at constant velocity without any delay at the cell-to-cell junction. The confocal laser scanning microscope with depth-discriminating ability is a valuable tool for taking pictures of the sequence of biological events in living cells.  相似文献   

9.
The fertilization Ca2+ wave in Xenopus laevis is a single, large wave of elevated free cytosolic Ca2+ concentration that emanates from the point of sperm-egg fusion and traverses the entire diameter of the egg. This phenomenon appears to involve an increase in inositol-1,4,5-trisphosphate (IP3) resulting from interaction of the sperm and egg, which then results in the activation of the endoplasmic reticulum Ca2+ release machinery. We have proposed models based on a static elevated distribution of IP3, and dynamic [IP3], however, these models have suggested that the fertilization wave passes through the center of the egg. Complementing these earlier models, we propose a more detailed model of the fertilization Ca2+ wave in Xenopus eggs to explore the hypothesis that IP3 is produced only at or near the plasma membrane. In this case, we find that the wave propagates primarily through the cortex of the egg, and that Ca2+ -induced production of IP3 at the plasma membrane allows IP3 to propagate in advance of the wave. Our model includes Ca2+ -dependent production of IP3 at the plasma membrane and IP3 degradation. Simulations in 1 dimension and axi-symmetric 3 dimensions illustrate the basic features of the wave.  相似文献   

10.
Intercellular Ca2+ waves in mechanically stimulated articular chondrocytes   总被引:3,自引:0,他引:3  
Articular cartilage is a tissue designed to withstand compression during joint movement and, in vivo, is subjected to a wide range of mechanical loading forces. Mechanosensitivity has been demonstrated to influence chondrocyte metabolism and cartilage homeostasis, but the mechanisms underlying mechanotransduction in these cells are poorly understood. In many cell types mechanical stimulation induces increases of the cytosolic Ca2+ concentration that propagates from cell to cell as an intercellular Ca2+ wave. Cell-to-cell communication through gap junctions underlies tissue co-ordination of metabolism and sensitivity to extracellular stimuli: gap junctional permeability to intracellular second messengers allows signal transduction pathways to be shared among several cells, ultimately resulting in co-ordinated tissue responses. Mechanically-induced Ca2+ signalling was investigated with digital fluorescence video imaging in primary cultures of rabbit articular chondrocytes. Mechanical stimulation of a single cell, obtained by briefly distorting the plasmamembrane with a micropipette, induced a wave of increased Ca2+ that was communicated to surrounding cells. Intercellular Ca2+ spreading was inhibited by 18 alpha-glycyrrhetinic acid, suggesting the involvement of gap junctions in signal propagation. The functional expression of gap junctions was assessed, in confluent chondrocyte cultures, by the intercellular transfer of Lucifer yellow dye in microinjection experiments while the expression of connexin 43 could be detected in Western blots. A series of pharmacological tools known to interfere with the cell calcium handling capacity were employed to investigate the mechanism of mechanically-induced Ca2+ signalling. In the absence of extracellular Ca2+ mechanical stimulation induced communicated Ca2+ waves similar to controls. Mechanical stress induced Ca2+ influx both in the stimulated chondrocyte but not in the adjacent cells, as assessed by the Mn2+ quenching technique. Cells treatment with thapsigargin and with the phospholipase C inhibitor U73122 blocked mechanically-induced signal propagation. These results provide evidence that in chondrocytes mechanical stimulation activates phospholipase C, thus leading to an increase of intracellular inositol 1,4,5-trisphosphate. The second messenger, by permeating gap junctions, stimulates intracellular Ca2+ release in neighbouring cells. Intercellular Ca2+ waves may provide a mechanism to co-ordinate tissue responses in cartilage physiology.  相似文献   

11.
The mechanism of the sarcoplasmic reticulum Ca2+-ATPase was investigated at low temperatures (0 to -12 degrees C). Transient states of the enzyme were studied by two complementary techniques: intrinsic protein fluorescence and rapid filtration on Millipore filters. Intrinsic fluorescence was used to distinguish conformational states of the protein and to evaluate the rate of conversion between these states. Filtrations were used to measure the evolution of the active sites during the transition; the time resolution was 2-5 s. At sub-zero temperatures this time is shorter than the lifetime of most of the enzymatic states which have been detected. In this paper the mechanism of Ca2+ binding to the protein is investigated in the absence of nucleotides. Two basic experiments are described; (1) Kinetics of calcium binding and dissociation over a wide range of calcium concentration. (2) Kinetics of calcium exchange (45Ca2+ in equilibrium 40Ca2+) at constant concentration. The results obtained in the first series of experiments are consistent with a sequential binding to two interacting Ca2+ binding sites. Calcium ions have very fast access to a site with low apparent affinity (Kd approximately 25 microM). Occupation of this site induces a slow conformational change which increased its apparent affinity and reveals a second site of high apparent affinity. At equilibrium the two sites are not equivalent in terms of rate of exchange. Two different rates were detected k fast greater than 0.2 s-1, k slow approximately 0.015 s-1 at -10 degrees C. Removal of Ca2+ from the fast exchanging site by addition of EGTA accelerates the rate of release of the slow exchanging one. A model is proposed with two interacting Ca2+-binding sites. A set of parameters has been obtained which produces correctly the Ca2+-binding curve and the fluorescence level at equilibrium as well as the rate constants of the calcium-induced fluorescence changes over a very wide range of Ca2+ concentrations (0.02 to 150 microM). The non-equivalence of the two classes of site and the meaning of the initial low-affinity binding are discussed.  相似文献   

12.
We have developed a fully three-dimensional (3D) model of calcium signaling in epithelial cells based on a set of reaction diffusion equations that are solved on a large-scale finite-element code in three dimensions. We have explicitly included the cellular compartments including the cell nucleus, cytoplasm, and gap junctions. The model allows for buffering of free Ca2+, calcium-induced calcium release, and the explicit inclusion of mobile buffers. To make quantitative comparisons to experimental results, we used fluorescence microscopy images of cells to generate an accurate mesh describing cell morphology. We found that Ca2+ wave propagation through the tissue is a function of both initial conditions used to start the wave and various geometrical parameters that affect propagation such as gap junction density and distribution, and the presence of nuclei. The exogenous dyes used in experimental imaging also affect wave propagation.  相似文献   

13.
The wave of activation current in the Xenopus egg   总被引:8,自引:0,他引:8  
A ring-shaped wave of inward current, the activation current, propagates across the Xenopus egg from the site of activation during the positive phase of the activation or fertilization potential. This activation current wave is due to an increased chloride conductance and reflects the propagated of the ionic channels responsible for the fertilization potential. These channels are present in the animal and vegetal hemispheres; however, the magnitude of the activation current is 6-7 times greater in the animal hemisphere. Outward current of a smaller magnitude and spread out over a larger area precedes and follows the inward current except at the point of activation where the current is first inward. The inward current wave is detected in all eggs activated by sperm and in eggs activated by pricking with a sharp needle, by application of the Ca2+ ionophore, A23187, and by intracellular iontophoresis of Ca2+ or inositol 1,4,5-trisphosphate. Reduction of the inward current by TMB-8, which blocks intracellular calcium release in some cells, suggests that the activation current channels are calcium sensitive and that the current wave is concomitant with a wave of increased intracellular calcium initiated by sperm-egg interaction. The wave of cortical granule exocytosis and two or more contraction waves follow the current wave.  相似文献   

14.
We have used confocal microscopy to examine the [Ca2+]i increase in the albino eggs of the frog Xenopus laevis after fertilization. Eggs were placed in agar wells with their animal poles downward so that fertilization occurred preferentially in the equatorial plane, and confocal microscopy was used to provide a two-dimensional optical section through the three-dimensional Ca2+ wave. These data indicate that the wave of increased [Ca2+]i traverses the entire egg and converges uniformly on the antipode. We show that ratioing two different fluorescent dyes to correct for variations in cell thickness is not a reliable technique for this very thick cell due to differential absorption with depth. Indo-1-dextran proves to be a more reliable Ca2+ indicator in this respect. Indo-1-dextran measurements indicate that the resting [Ca2+]i is not uniform throughout the egg but exhibits a 15% higher [Ca2+]i in the cortex than deep in the cytoplasm. This difference is accentuated during wave propagation and is not dependent on extracellular Ca2+. The average peak [Ca2+]i in the center of the egg as the wave propagates through it is 0.7 microM, approximately 60% of the peak cortical [Ca2+]i. The wave velocity through the center of the egg (5.7 micron/s) is slower than that in the cortex (8.9 micron/s), and both velocities vary slightly during transit. The cortical wave speed is particularly high at the beginning (15.7 micron/s) and end (17.2 micron/s) of the wave. Eggs injected with 30-80 microM of 3 kD heparin to compete with inositol-1,4,5,-trisphosphate for binding to its receptor exhibited multiple localized spots of elevated [Ca2+]i, and many of these did not initiate a wave. For those that did lead to a wave, it was usually slow moving and exhibited a reduced (60% reduction) amplitude compared with controls.  相似文献   

15.
Addition of calcium chloride to an egg homogenate of Strongylocentrotus purpuratus stimulates O2 consumption which is not inhibited by millimolar cyanide. Results strongly suggest that Ca2+-stimulated O2 consumption is at least partially the result of polyunsaturated fatty acid oxidation. First, addition of arachidonic acid (AA), or other polyunsaturated fatty acids, to the homogenate enhance Ca2+-stimulated O2 consumption; this enhancement, by AA, being coupled to its oxidation to a hydroxy fatty acid. Second, calcium stimulates a lipase activity in the homogenate that is capable of releasing free fatty acids. Third, Ca2+-stimulated O2 consumption and AA oxidation have virtually identical calcium requirements and pH optima. The sequence of events then is that upon calcium addition to the homogenate, lipase activity is increased which liberates free fatty acids. At the same time calcium also activates a polyunsaturated fatty acid oxygenase, possibly lipoxygenase, that converts the free fatty acids to hydroxy fatty acids. The possible physiological importance of this reaction is underscored by the high affinity for Ca2+ [approximately 10(-7)M], an ion known to increase above the required levels at fertilization. The pH activity profile also suggests possible physiological modulation because a pH change of 6.8 increasing to 7.2, as suggested to occur after fertilization, yields almost a twofold increase in O2 consumption. Egg homogenates from many other invertebrate species have the ability to oxidize AA in a Ca2+-dependent fashion. For the investigated species, the presence of Ca2+-stimulated O2 consumption and AA oxidation correlates with the presence of cyanide insensitive respiration in the intact egg.  相似文献   

16.
The egg of ascidians (urochordate), as virtually all animal and plant species, displays Ca2+ signals upon fertilisation. These Ca2+ signals are repetitive Ca2+ waves that initiate in the cortex of the egg and spread through the whole egg interior. Two series of Ca2+ waves triggered from two distinct Ca2+ wave pacemakers entrain the two meiotic divisions preceding entry into the first interphase. The second messenger inositol (1,4,5) trisphosphate (IP3) is the main mediator of these global Ca2+ waves. Other Ca2+ signalling pathways (RyR and NAADPR) are functional in the egg but they mediate localised cortical Ca2+ signals whose physiological significance remains unclear. The meiosis I Ca2+ wave pacemaker is mobile and relies on intracellular Ca2+ release from the endoplasmic reticulum (ER) induced by a large production of IP3 at the sperm aster site. The meiosis II Ca2+ wave pacemaker is stably localised in a vegetal protrusion called the contraction pole. It is probable that a local production of IP3 in the contraction pole determines the site of this second pacemaker while functional interactions between ER and mitochondria regulate its activity. Finally, a third ectopic pacemaker can be induced by a global increase in IP3, making the ascidian egg a unique system where three different Ca2+ wave pacemakers coexist in the same cell.  相似文献   

17.
Spontaneous calcium waves in enzymatically isolated rat cardiac myocytes were investigated by confocal laser scanning microscopy (CLSM) using the fluorescent Ca2+-indicator fluo-3 AM. As recently shown, a spreading wave of enhanced cytosolic calcium appears, most probably during Ca2+ overload, and is initiated by an elementary event called a "calcium spark." When measured by conventional fluorescence microscopy the propagation velocity of spontaneous calcium waves determined at several points along the cardiac myocyte was previously found to be constant. More precise measurements with a CLSM showed a nonlinear propagation. The wave velocity was low, close to the focus, and increased with increasing time and propagation length, approaching a maximum of 113 microns/s. This result was surprising, inasmuch as for geometrical reasons a decrease of the propagation velocity might be expected if the confocal plane is not identical with that plane where the focus of the wave was localized. It is suggested that the propagation velocity is essentially dependent on the curvature of the spreading wave. From the linear relationship of velocity versus curvature, a critical radius of 2.7 +/- 1.4 microns (mean +/- SD) was worked out, below which an outward propagation of the wave will not take place. Once released from a sufficiently extended cluster of sarcoplasmic reticulum release channels, calcium diffuses and will activate its neighbors. While traveling away, the volume into which calcium diffuses becomes effectively smaller than at low radii. This effect is the consequence of the summation of elementary events (Ca2+ sparks) and leads to a steeper increase of the cytosolic calcium concentration after a certain diffusion path length. Thus the time taken to reach a critical threshold of [Ca2+]i at the neighboring calcium release sites decreases with decreasing curvature and the wave will propagate faster.  相似文献   

18.
The Quin fluorescence in gamma-hexachlorocyclohexane-stimulated polymorphonuclear leukocytes is rapidly increased, which points to the increase in Ca2+in concentration during leukotriene B4 synthesis in leukocytes. An addition of EGTA and calcium antagonists (nifedipine, verapamil, diltiazem) to cell suspensions does not affect the basal level of internal Ca2+ but results in the inhibition of the gamma-hexachlorocyclohexane-induced Ca2+ increase. Two mechanisms of calcium homeostasis regulation in neutrophils are proposed. One of them, cAMP regulation, is coupled with a potent inhibiting effect of prostacyclin, an adenylate cyclase activator, on Ca2+in increase in stimulated neutrophils. The other one is the activation of protein kinase C catalyzed by 4 beta-phorbol-12 beta-myristate-13 alpha-acetate. The experimental results suggest that such an activation blocks Ca2+ influx into the cells via the closure of Ca2+ channels. The synergism of action of the above mechanisms in the regulation of calcium homeostasis in neutrophils is demonstrated.  相似文献   

19.
The recently available compound quin-2, which acts as a high affinity fluorescent indicator for calcium in the cytosol, was used to examine the role of calcium mobilization in the alveolar macrophage during the stimulation of 0-2 production by the tripeptide N-formyl norleucyl leucyl phenylalanine (FNLLP). After preloading with quin-2, the production of 0-2 was measured in conjunction with the transfer of 45Ca+2 and changes in quin-2 fluorescence upon stimulation with FNLLP. When cells were maintained in low (10 microM) extracellular calcium medium the presence of 1.5 mM quin-2 in the cytosolic space partially inhibited the rate of 0-2 production upon stimulation by FNLLP. Addition of 1 mM Ca+2 to the medium prior to stimulation rapidly restored the cell's capability to produce 0-2 upon stimulation at rates equal to control and extended the duration of stimulated 0-2 production as well. Quin-2 fluorescence measurements indicated an increase in cytosolic Ca+2 upon stimulation with FNLLP. This increase was lowest under conditions in which 0-2 production was inhibited. The addition of 1 mM Ca+2 to the medium caused by itself a rapid but transient increase in cytosolic Ca+2 as measured with quin-2 without stimulating 0-2 production. This intracellularly redistributed calcium was determined to be the source of the greater increase in cytosolic calcium during stimulation in the presence of high extracellular calcium. Measurements of 45Ca+2 transfer demonstrated a buffering of cytosolic Ca+2 changes by quin-2, which in low calcium medium could deplete calcium stores. It is suggested that this effect, prior to stimulation, was responsible for the mitigated 0-2 response for those cells maintained in low calcium medium, wherein calcium stores could not be replenished. These results suggested that the cell's mechanism for regulating cytosolic and bound calcium concentrations may also play an integral role in its normal mechanism for stimulated 0-2 production. They further support the postulate that the commonly observed rise in the concentration of calcium in the cytosol upon formyl peptide stimulation is a concomitant but nonregulatory event only.  相似文献   

20.
Cellular uptake of Cd2+ has been monitored using intracellularly trapped dyes, Fura 2 and Quin 2, which bind Cd2+ with extremely high affinity, and digital fluorescence imaging has been used to visualize intracellular free Cd2+. The excitation spectrum of the Cd2+ complex of Fura 2 is similar to that of the Ca2+ complex, whereas Cd2+ displaces Ca2+ from Quin 2 and reduces fluorescence. Fluorescence of Fura 2-loaded cells increased when 50 microM extracellular Cd2+ was added and fluorescence of Quin 2-loaded cells decreased. Cd2+ uptake by GH3 pituitary cells, which occurs in part via voltage-sensitive L-type calcium channels, was increased by BAY K8644 and depolarization and decreased by nimodipine. When Fura 2 and Quin 2 were used to measure Cd2+ uptake by glial C6 cells, which have no L-channel activity, high K+ and BAY K8644 did not change the apparent rate of Cd2+ uptake. GH3 and C6 cells were incubated with Cd2+ for 24 h and loaded with Fura 2, and fluorescence was measured before and after addition of tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN), a membrane permeant chelator with extremely high affinity for metals. TPEN had little effect on fluorescence of Fura 2-loaded GH3 and C6 cells not exposed to Cd2+ but decreased fluorescence of cells that had been incubated with 1-10 microM Cd2+. Fluorescence ratio imaging of Fura 2-loaded cells was used to image intracellular free Cd2+ for both GH3 and C6 cells. Cd2+ uptake over 30-180 min could be followed by the increase in 340/380 fluorescence ratio and the increase in fluorescence ratio was reversed within 5 min by TPEN. The results provide further evidence for the importance of voltage-gated calcium channels to Cd2+ uptake of certain cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号