首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small molecule inhibitors of cyclin-dependent kinase 5 (CDK5) protect neurons from cell death following various insults. To elucidate the cellular mechanism of action we investigated changes in protein phosphorylation in cultured rat cerebellar granule neurons after administration of the CDK5 inhibitor Indolinone A. By immunoblot analysis we detected enhanced phosphorylation of the extracellular signal-regulated kinase1/2 (ERK1/2) and the Jun N-terminal kinase (JNK) substrate c-Jun. Co-administration of U0126, an inhibitor of ERK1/2, or SP600125, an inhibitor of JNK, blocked phosphorylation of ERK1/2 or c-Jun, but did not affect neuroprotection by the CDK5 inhibitor. By metal affinity chromatography, two-dimensional (2D) gel electrophoresis, and MALDI-TOF mass spectrometry we identified several phosphoproteins that accumulated in neurons treated with Indolinone A. Among them were proteins involved in neurotransmitter release, which is consistent with a physiological function of CDK5 in synaptic signaling. Moreover, we identified proteins acting in energy metabolism, protein folding, and oxidative stress response. Similar findings have been reported in yeast following inhibition of Pho85 kinase, which is homologous to mammalian CDK5 and acts in environmental stress signaling. These results suggest that inhibition of CDK5 activates stress responsive proteins that may protect neurons against subsequent injurious stimuli.  相似文献   

2.
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase that plays a critical role in the early development of the nervous system. Deregulation of CDK5 is believed to contribute to the abnormal phosphorylation of various cellular substrates associated with neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Acyclic urea 3 was identified as a potent CDK5 inhibitor and co-crystallographic data of urea 3/CDK2 enzyme were used to design a novel series of 3,4-dihydroquinazolin-2(1H)-ones as CDK5 inhibitors. In this investigation we present our synthetic studies toward this series of compounds and discuss their biological relevance as CDK5 inhibitors.  相似文献   

3.
The unusual cyclin-dependent protein kinase 5 (CDK5) was discovered based on its sequence homology to cell cycle regulating CDKs. CDK5 was found to be active in brain tissues, where it is not involved in cell cycle regulation but in the regulation of neuronal cell differentiation and neurocytoskeleton dynamics. An aberrant regulation of CDK5 leads to the development of various neurodegenerative diseases including Alzheimer's disease. Although CDK5 is not regulated by cyclins, its activity does depend on the association with a protein activator and the presence or absence of further inhibitory factors. Recently, CDK5RAP1 was discovered to inhibit the active CDK5 kinase. Here, we show that CDK5RAP1 is a radical SAM enzyme, which postsynthetically converts the RNA modification N6-isopentenyladenosine (i(6)A) into 2-methylthio-N6-isopentenyladenosine (ms(2)i(6)A). This conversion is surprisingly not limited to mitochondrial tRNA, where the modification was known to exist. Instead, CDK5RAP1 introduces the modification also into nuclear RNA species establishing a link between postsynthetic kinase-based protein modification and postsynthetic RNA modification.  相似文献   

4.
Mapelli M  Musacchio A 《Neuro-Signals》2003,12(4-5):164-172
Cyclin-dependent kinase 5 (CDK5) plays an essential role in the development of the central nervous system during mammalian embryogenesis. In the adult, CDK5 is required for the maintenance of neuronal architecture. Its deregulation has profound cytotoxic effects and has been implicated in the development of neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. In this review, we concentrate on the regulation of CDK5 activity, privileging a structural perspective based on a decade of structural analyses of different members of the CDK family, including CDK2 and CDK5. We review the activation mechanism of CDK5 and discuss its differences and similarities with that of CDK2 and of the other members of the CDK family.  相似文献   

5.
MAK (male germ cell-associated protein kinase) and MRK/ICK (MAK-related kinase/intestinal cell kinase) are human homologs of Ime2p in Saccharomyces cerevisiae and of Mde3 and Pit1 in Schizosaccharomyces pombe and are similar to human cyclin-dependent kinase 2 (CDK2) and extracellular signal-regulated kinase 2 (ERK2). MAK and MRK require dual phosphorylation in a TDY motif catalyzed by an unidentified human threonine kinase and tyrosine autophosphorylation. Herein, we establish that human CDK-related kinase CCRK (cell cycle-related kinase) is an activating T157 kinase for MRK, whereas active CDK7/cyclin H/MAT1 complexes phosphorylate CDK2 but not MRK. Protein phosphatase 5 (PP5) interacts with MRK in a complex and dephosphorylates MRK at T157 in vitro and in situ. Thus, CCRK and PP5 are yin-yang regulators of T157 phosphorylation. To determine a substrate consensus, we screened a combinatorial peptide library with active MRK. MRK preferentially phosphorylates R-P-X-S/T-P sites, with the preference for arginine at position -3 (P-3) being more stringent than for prolines at P-2 and P+1. Using the consensus, we identified a putative phosphorylation site (RPLT(1080)S) for MRK in human Scythe, an antiapoptotic protein that interacts with MRK. MRK phosphorylates Scythe at T1080 in vitro as determined by site-directed mutagenesis and mass spectrometry, supporting the consensus and suggesting Scythe as a physiological substrate for MRK.  相似文献   

6.
The protein kinase CDK5 (cyclin-dependent kinase 5) is activated through its association with a cyclin-like protein p35 or p39. In pathological conditions (such as Alzheimer's disease and various other neuropathies), truncation of p35 leads to the appearance of the p25 protein. The interaction of p25 with CDK5 up-regulates the kinase activity and modifies the substrate specificity. ATP-mimetic inhibitors of CDK5 have already been developed. However, the lack of selectivity of such inhibitors is often a matter of concern. An alternative approach can be used to identify highly specific inhibitors that disrupt protein interactions involving protein kinases. We have developed a bioluminescence resonance energy transfer (BRET)-based screening assay in yeast to discover protein-protein interaction inhibitors (P2I2). Here, we present the first use of BRET in yeast for the screening of small molecule libraries. This screening campaign led to the discovery of one molecule that prevents the interaction between CDK5 and p25, thus inhibiting the protein kinase activity. This molecule may give rise to high-specificity drug candidates.  相似文献   

7.
8.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease resulting in cognitive and behavioral impairment. The two classic pathological hallmarks of AD include extraneuronal deposition of amyloid ?? (A??) and intraneuronal formation of neurofibrillary tangles (NFTs). NFTs contain hyperphosphorylated tau. Tau is the major microtubule-associated protein in neurons and stabilizes microtubules (MTs). Cyclin dependent kinase 5 (CDK5), when activated by the regulatory binding protein p25, phosphorylates tau at a number of proline-directed serine/threonine residues, resulting in formation of phosphorylated tau as paired helical filaments (PHFs) then in subsequent deposition of PHFs as NFTs. Beginning with the structure of Roscovitine, a moderately selective CDK5 inhibitor, we sought to conduct structural modifications to increase inhibitory potency of CDK5 and increase selectivity over a similar enzyme, cyclin dependent kinase 2 (CDK2). The design, synthesis, and testing of a series of 1-isopropyl-4-aminobenzyl-6-ether-linked benzimidazoles is presented.  相似文献   

9.
Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a serine/threonine-directed kinase that is activated following increases in intracellular Ca(2+). CaMKKβ activates Ca(2+)/calmodulin-dependent protein kinase I, Ca(2+)/calmodulin-dependent protein kinase IV, and the AMP-dependent protein kinase in a number of physiological pathways, including learning and memory formation, neuronal differentiation, and regulation of energy balance. Here, we report the novel regulation of CaMKKβ activity by multisite phosphorylation. We identify three phosphorylation sites in the N terminus of CaMKKβ, which regulate its Ca(2+)/calmodulin-independent autonomous activity. We then identify the kinases responsible for these phosphorylations as cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3 (GSK3). In addition to regulation of autonomous activity, we find that phosphorylation of CaMKKβ regulates its half-life. We find that cellular levels of CaMKKβ correlate with CDK5 activity and are regulated developmentally in neurons. Finally, we demonstrate that appropriate phosphorylation of CaMKKβ is critical for its role in neurite development. These results reveal a novel regulatory mechanism for CaMKKβ-dependent signaling cascades.  相似文献   

10.
Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.  相似文献   

11.
12.
Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.  相似文献   

13.
14.

Background

Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown.

Methods and Results

Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif.

Conclusions and Significance

These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury.  相似文献   

15.
Cyclin-dependent kinase 5 (CDK5) is a unique CDK, the activity of which can be detected in postmitotic neurons. To date, CDK5 purified from mammalian brains has always been associated with a truncated form of the 35-kDa major brain specific activator (p35, also known as nck5a) of CDK5, known as p25. In this study, we report that p35 can be cleaved to p25 both in vitro and in vivo by calpain. In a rat brain extract, p35 was cleaved to p25 by incubation with Ca(2+). This cleavage was inhibited by a calpain inhibitor peptide derived from calpastatin and was ablated by separating the p35.CDK5 from calpain by centrifugation. The p35 recovered in the pellet after centrifugation could then be cleaved to p25 by purified calpain. Cleavage of p35 was also induced in primary cultured neurons by treatment with a Ca(2+) ionophore and Ca(2+) and inhibited by calpain inhibitor I. The cleavage changed the solubility of the CDK5 active complex from the particulate fraction to the soluble fraction but did not affect the histone H1 kinase activity. Increased cleavage was detected in cultured neurons undergoing cell death, suggesting a role of the cleavage in neuronal cell death.  相似文献   

16.
Structure-based 3D-QSAR approaches (CoMFA and CoMSIA) were applied to understand the structural requirements of the Cyclin-dependent kinase 5/p25 inhibitors. Cyclin-dependent kinase 5 (CDK5) is believed to play an important role in the development of the central nervous system during the process of mammalian embryogenesis. Genetic algorithm based docking program (GOLD) was successfully utilized to orient the compounds inside the binding pocket of the CDK5/p25 structure. The adapted alignment method with the suitable parameters resulted in a reliable model. Furthermore, the final model was robust enough to forecast the activities of test compounds, satisfactorily. The contour maps were produced around the functional groups to understand the SAR requirements. Moreover, we also investigate the structural attributes of the inhibitors which make them selective toward CDK5/p25 over its close counterpart, i.e., CDK2. The study could be helpful to rationalize the new compounds with better inhibition and selectivity profiles against CDK5/p25.  相似文献   

17.
CDK5 plays an indispensable role in the central nervous system, and its deregulation is involved in neurodegeneration. We report the crystal structure of a complex between CDK5 and p25, a fragment of the p35 activator. Despite its partial structural similarity with the cyclins, p25 displays an unprecedented mechanism for the regulation of a cyclin-dependent kinase. p25 tethers the unphosphorylated T loop of CDK5 in the active conformation. Residue Ser159, equivalent to Thr160 on CDK2, contributes to the specificity of the CDK5-p35 interaction. Its substitution with threonine prevents p35 binding, while the presence of alanine affects neither binding nor kinase activity. Finally, we provide evidence that the CDK5-p25 complex employs a distinct mechanism from the phospho-CDK2-cyclin A complex to establish substrate specificity.  相似文献   

18.
19.
Cyclin E-associated CDK2 activity is required for the initiation of DNA synthesis in human cells. CDK2 activity is tightly regulated; CDK2 must be in the nucleus, bound to a cyclin, phosphorylated on T160, and dephosphorylated on T14/Y15 for complete kinase activation. Nuclear localization exposes CDK2 to activating enzymes (CAK, Cdc25A) in stimulated cells. Previous studies from our lab indicate CDK2 nuclear localization and cyclin E co-expression are insufficient to cause CDK2 activation or T160 phosphorylation in stimulated IIC9 cells; these activities still require serum stimulation and ERK kinase activity. Recent studies have implicated a role for origin of replication (ORC) licensing proteins in the activation of G1/S Cdks. In this study, we show that CDK2 associates with chromatin and Cdc6 in an ERK-dependent manner following stimulation of IIC9 CHEF cells. We show that nuclear-localized CDK2 (CDK2-NLS) ectopically expressed with cyclin E requires mitogenic stimulation and ERK activation for chromatin association, in addition to previously shown kinase activation and T160 phosphorylation in IIC9 cells. Additionally, we show that expression of Cdc6 in stimulated IIC9 cells treated with ERK inhibitor rescues CDK2-NLS chromatin association, kinase activation, and T160 phosphorylation. From the above data, we deduce ERK-dependent CDK2 activation is due in part to ERK-dependent Cdc6 expression. To examine the role of Cdc6 directly in stimulated primary human fibroblasts, we used RNA interference to attenuate the expression of Cdc6. We show that Cdc6 expression is required for CDK2 chromatin association and kinase activation in stimulated primary human fibroblasts. Additionally, we show that Cdc6 expression is required for the initiation of DNA synthesis and S phase entry in stimulated primary human fibroblasts. Ultimately, this data implicates Cdc6 expression as an important mitogen-induced mechanism in the activation of CDK2/cyclin E, the initiation of DNA synthesis, and the regulation of G1-S phase progression.  相似文献   

20.
Glycogen synthase kinase 3 (GSK-3) is an attractive target for the treatment of diabetes, and paullones have been reported to be effective inhibitors of GSK-3. However, it is still a challenging task to improve selectivity among protein kinases, especially cyclin-dependent kinases (CDKs). Here we investigated the mechanism that enables paullones to selectively inhibit GSK-3 rather than cyclin-dependent kinase 5 (CDK5) using sequence alignment, molecular dynamics simulations, free-energy calculations and free-energy decomposition analysis. The results indicate that the interaction between paullones and Val135 of GSK-3 is obviously stronger than that between paullones and Cys83 of CDK5, suggesting that paullones could be utilized as potent selective inhibitors. Meanwhile, we observed that the decrease in the interaction between paullones and the Asp86 of CDK5 favors their selectivity towards GSK-3 rather than CDK5, as demonstrated using 1-azakenpaullone as an example. Although substitution at position 9 and replacement at position 2 may influence the activity of GSK-3, they only have a minor effect on the selectivity. We expect that the information obtained here could prove useful for developing specific paullone inhibitors of GSK-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号